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ABSTRACT

In our previous works we defined the notion of filtering
function that represents filtering as a function, and
clarified the properties of filtering functions to establish
a mathematical foundation of information filtering. The
constructed mathematical foundation makes it possible
to qualitatively evaluate various filtering methods, to
optimize processing methods in filtering, and to design a
declarative language describing filtering policies. In this
paper, we investigate the properties in case of changing
the composition order of filtering functions to clarify the
characteristics of filtering functions that combine two
filtering methods. Exploiting the results of this paper,
we can qualitatively indicate the effect of the execution
order on the filtering results in filtering consisting of
some filtering methods.

1 INTRODUCTION

Since mobile computing and ubiquitous networking be-
come widespread in recent years, various types of data
can be distributed regardless of time and location. More-
over, the number of broadcast services has increased due
to the introduction of new satellite-based services and
the digitization of broadcasts[10]. Therefore, broadcast
services for mobile computers, such as cellular mobile
telephones and PDAs, have also been setting up. In
this environment, not only is the amount of data being
distributed or broadcast increasing, but so is the variety
of data. However, users often only need small amounts
of specific data, and it is very difficult to retrieve the
information they are interested in from the enormous
amounts of data available. As a result, various mech-
anisms that automatically filter data, and user-request
description languages for filtering, have been proposed|[1,
2,3, 7, 9. These filtering mechanisms filter data by
different criteria such as keyword matching or relevance
feedback. However, no mathematical foundation for
qualitatively representing these filtering processes exists.
Thus, it is not possible to qualitatively evaluate various
filtering methods, to optimize processing methods in
filtering, or to design a declarative language for filtering
processes. In [11], we defined a filtering function that
expresses filtering as a function, and this function made
it possible to qualitatively represent several properties of
filtering by satisfying relevant constraints.

Filtering methods currently used in practice are gen-
erally implemented by combining various other meth-
ods whose filtering policies or features are different.
In composite filtering, more efficient processes can be
achieved by changing the execution order appropriately.
For example, when combining a filtering method using
simple operations with that using complex operations,
the processing cost of the entire filtering can be reduced
by firstly executing the filtering method with simple
operations, which will reduce the amount of data to
be processed by the filtering method with the complex
operations. Moreover, by first executing the filtering
method that extracts less data and further narrowing
down the amount of data at an early stage, the quantity
of data that would’ve been processed by both the first
filtering method and its subsequent filtering method can
be reduced. Generally, the larger the amount of data
to be processed is, the higher the cost of processing
them will become. It is therefore effective to change
the execution order of composite filtering according to
the filtering environment, such as by the contents and
structure of the received data.

In some combinations of filtering methods, however,
the filtering result may not be consistent if the execution
order is changed dynamically according to the environ-
ment. For example, consider a user request “I want
the data items whose contents are related to economic
news, and ranked in the top 10.” This request is carried
out by a filtering method combining two methods, f
and g. One filtering method f extracts the data items
whose contents are related to economic news. The other
filtering method g arranges the received data in order
of importance according to the user’s preferences, then
extracts the 10 top-ranked data. When the quantity
of received data 1s sufficiently large, if method f is
precedently executed, the number of the filtering result
set 18 10. On the contrary, if method ¢ is precedently
executed, the number of the filtering result set is less
than 10 because the result of the precedent method g¢
includes data that will not be selected by the subsequent
method f. In other words, the filtering results may not
be equal if the execution order of the two methods 1s
interchanged. Consequently, in changing the execution
order, it is necessary to assure that the filtering results
are consistent even if the execution order is changed.

In this paper, we address the effect of exchanging the
composition order of filtering functions, which we have
defined, on filtering results. Exploiting the results of this
paper, we can implement composite filtering considering
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exchanges of the execution order in proportion to the
filtering environment. Furthermore, we can qualitatively
evaluate the effect of composition order on the filtering
results.

This paper is organized as follows. Section 2 outlines
the filtering function we defined in our previous work.
Section 3 clarifies the inclusion relation between the
filtering results of composite filtering whose composition
order is reversed. Section 4 considers the filtering
methods currently applied in practice through the results
clarified in this paper. Finally, we conclude our paper in
Section 5.

2 PRELIMINARIES

In this section, we outline the filtering function described
n [11], which is the foundation of this study.

2.1 Categorization of the Filtering Processes

In this paper, we categorize the filtering methods that
exist in the real world into several patterns by the
number of filtering processes and receivers, as follows:

e Sequential processing

In a system using sequential processing, newly
received data and previously filtered results, which
have already been stored, are merged and filtered
every time new data is received.

e Batch processing

In a system using batch processing, a receiver
accumulates broadcast data and filters them out in

bulk.
e Distributed processing

In a system using distributed processing, the re-
ceived data set is divided into multiple arbitrary
data subsets, and each subset is filtered separately
before the results are merged.

e Parallel processing

In a system using parallel processing, the merged
filtering results of distributed processing are re-

filtered.

2.2 Properties of Filtering Function

Let T be a set of data items.

defined as a function f on 9T that satisfies the following
two properties for an arbitrary 7 C T *:

A filtering function is

(I cT.
fUT) = f(T).

D: decreasing
ID: idempotent

The following properties of a filtering function are

defined:

1In this paper, A C B means that A is a subset of B (including
the case where A = B).

M: monotone

if SCT then [f(S)C f(T).
DI: distributed increasing

F(SuT) C f(S)U f(T).
DD: distributed decreasing

F(SUT) 2 f(S)U f(T).
DE: distributed equivalence

FSUT) = f(S)uU K(T).
PI: parallel increasing

FSUT) C fUF(S)UAT)).
PD: parallel decreasing

F(SUT) D fUF(S)UAT)).
PE: parallel equivalence

F(SUT) = fF(S)UAT)).
SI: sequential increasing

F(SuT) C f(SUT)).
SD: sequential decreasing

F(SUT) > f(SUFT)).
SE: sequential equivalence

F(SuT) = f(SUf(T)).
C: consistency

FS)Y D f(suTns.

Here, S and T are arbitrary subsets of T. The sequential
equivalence property (SE) signifies that the filtering
results of batch processing and sequential processing
are equivalent. Similarly, the distributed equivalence
property (DE) signifies that the filtering results of batch
processing and distributed processing are equivalent, and
the parallel equivalence property (PE) signifies that the
filtering results of batch processing and parallel process-
ing are equivalent. In [11], we clarified the relationship
between the properties: the sequential increasing and
distributed increasing, parallel increasing, consistency
properties are equivalent; the distributed decreasing
and monotone properties are equivalent; the sequen-
tial equivalence and parallel equivalence properties are
equivalent (SI<DIPI<C, DD&M, SESPE).

2.3 Composition of filtering functions

A composite function of filtering functions is not neces-
sarily always a filtering function. In [13], we clarified the
conditions needed for a composite filtering function to
be a filtering function as follows: For filtering functions
f and g, we say “f is filtering composable with ¢” when
the composite function fog is a filtering function. When
f: Dy — Da, we designate I'm(f) 2 {f(X)|X € Dy}
as the range of f. In addition, we define that “f s
g-invariant” as f(X) = ¢(X) is satisfied for all X €
Im(fog). Here, we proved the following theorem:

Theorem 1 For filtering functions f and g, the fact
that f s filtering composable with ¢ is equivalent to that
f is g-invariant. a

2.4 Selection Function and Ranking Function

Regarding general filtering, many filtering methods are
based on selection and ranking methods. In [12],



we defined selection function and ranking function as
follows:

Filtering by selection is a method that specifies
whether each broadcast data item is to be stored. Ex-
amples of filtering by selection include keyword matching
and filtering by a threshold. Keyword matching carries
out the logical operation on keywords included in the
data and those representing a user’s preference, storing
only the data that includes particular keywords. Filter-
ing by a threshold gives an evaluation value to each data
according to its content, and stores the data only if its
evaluation value is larger (or smaller) than the threshold.
Assume that there exists X C T. We define a selection
function of X, Bx, as Bx(S5) 250X forall SCT.
We call X the potential set of this selection function,
meaning the set of data items that satisfy the selection
condition. It is clear that Bx is a filtering function. Also
note that every selection function satisfies X = Bx (T).

Filtering by ranking is a method that arranges the
received data in order of importance according to the
user’s preferences, and extracts a particular quantity of
top-ranked data. Suppose a total order R = (T, <) is
given. A function f is an n-ranking function for a total
order R if and only if, for all S C T, f is represented as

f(9) 2 {r € T|x < a} NS for a certain ¢ € T and the
cardinality of f is n. We define that the cardinality of a

function f on 2T is n(€ N, which is the set of 0 and all
positive integers) if and only if

[f(S)|=n (if S is an infinite set,
or S is a finite set and |S| > n)
f(S)y=5 (if Sis afinite set and |S| < n)

is satisfied for all S C T. We call a filtering function
that satisfies this condition a cardinality function.

The following theorems on selection function and
ranking function were clarified in [12]:

Theorem 2 A filtering function f is a selection func-
tion if and only if f satisfies the distributed equivalence
property. O

Theorem 3 A filtering function f is an n-ranking func-
tion for a total order (T, <) if and only if f satisfies the
sequential equivalence property and the cardinality of f
s n. a

3 INCLUSION RELATION OF
COMPOSITE FUNCTIONS

In this section, we clarify the effect of exchanging the
composition order of composite filtering functions on
filtering results. In Subsection 3.1, we show the effect
of that for the composite functions of filtering functions
that satisfy the increasing or decreasing properties. In
Subsection 3.2, we present the effect of that for the
composite functions of filtering functions that satisfy the
equivalence properties.

3.1 Filtering Functions that Satisfy the Increas-
ing or Decreasing Properties

For the increasing and decreasing properties denoted
in Section 2, the monotone (M), sequential increasing
(SI), sequential decreasing (SD), and parallel decreasing
(PD) properties are not equivalent to each other. In this
subsection, we reveal the inclusion relation between the
filtering results of the composite filtering functions whose
composition order is reversed for filtering functions that
satisfy those four properties, and introduce the following
lemmas. We omit the proofs of the lemmas.

Lemma 1 If filtering functions f and ¢ satisfy the
monotone property, and f is filtering composable with ¢,
g is filtering composable with f, then f(g(5)) = g(f(S))
s satisfied for all S C T. O

Lemma 2 For filtering functions f and g, of [ satisfies
the monotone property, and g satisfies the sequential
mecreasing property, f is filtering composable with ¢, g
is filtering composable with f, then f(g(S)) C g(f(5)) is
satisfied for all S C T. O

Lemma 3 For filtering functions f and g, of [ satisfies
the monotone property, and g satisfies the sequential
mecreasing property, f is filtering composable with ¢, g
is filtering composable with f, then f(g(S)) D g(f(S)) is
not necessarily satisfied for all S C T. O

Lemma 4 For filtering functions f and g, of [ satisfies
the monotone property, and g satisfies the sequential
decreasing property, f is filtering composable with ¢, g
is filtering composable with f, then f(g(S)) C g(f(S))
and f(g(S)) D g(f(S)) are not necessarily satisfied for
allS CT. |

Lemma 5 For filtering functions f and g, if [ satisfies
the monotone property, and ¢ satisfies the parallel de-
creasing property, f is filtering composable with g, g s
filtering composable with f, then f(g(S)) C g(f(S)) and
F(9(S)) D g(f(S)) are not necessarily satisfied for all
ScCT. O

Lemma 6 If filtering functions f and ¢ satisfy the
sequential increasing property, and f s filtering com-
posable with ¢, g is filtering composable with f, then

F(g(9)) C g(f(S)) and f(g(S)) D g(f(S)) are not
necessarily satisfied for all S C T. O

Lemma 7 For filtering functions f and g, of [ satisfies
the sequential increasing property, and g satisfies the
sequential decreasing property, f is filtering composable
with g, g is filtering composable with f, then f(g(S)) C

g(f(9)) and f(g(S)) D g(f(S)) are not necessarily
satisfied for all S C T. O

Lemma 8 For filtering functions f and g, of [ satisfies
the sequential increasing property, and g satisfies the
parallel decreasing property, f 1is filtering composable
with g, g is filtering composable with f, then f(g(S)) C

g(f(9)) and f(g(S)) D g(f(S)) are not necessarily
satisfied for all S C T. O



Table 1: The inclusion relation between fog and go f for
f and g that satisfy the decreasing or increasing property

F\yg M ST SD PD

M = C,-> |-G ->|-GC->
ST 5,-C |-GC-D|-C-D>|-GC-D
SD [-C-D|-GC-D]|-C-D|-GC-0D
PD |[-C,-D | -GC-D|-GC-D|-C-D

Table 2: The inclusion relation between fog and go f
for f and ¢ that satisfy the equivalence property

g DE .
f (Selection) SE, PE Ranking
DE(Selection) = C,— D C,mD
SE, PE D,~ C -G D | G, D
Ranking 0,7 C -2 |G~ D

Lemma 9 If filtering functions f and ¢ satisfy the
sequential decreasing property, and [ is filtering com-
posable with g, g 1is filtering composable with f, then

Fg(8)) € g(f(S)) and f(g(S) D g(f(5)) are not
necessarily satisfied for all S C T. O

Lemma 10 For filtering functions f and g, if f satisfies
the sequential decreasing property, and g satisfies the
parallel decreasing property, f is filtering composable
with g, g is fitering composable with f, then f(g(5)) C

g(f(S)) and f(g(S)) D g(f(5)) are not necessarily
satisfied for all S C T. O

Lemma 11 If filtering functions f and g satisfy the
parallel decreasing property, and f is filtering composable
with g, g is fitering composable with f, then f(g(5)) C

g(f(S)) and f(g(S)) D ¢g(f(S)) are not necessarily
satisfied for all S C T. O

Table 1 shows the inclusion relation between the
filtering results of composite filtering functions whose
composition order is reversed for filtering functions that
satisfy the increasing or decreasing properties as proved
by the above lemmas. In Table 1, “=” means that
Fog(T)=go f(T) is satisfied for all T'C T. Moreover,
“C” means that fog(T) C go f(T) for all T C T, and
“= C” means that fo g(T) ¢ go f(T) for a certain
TCT.

From Table 1, only the composite function of filtering
functions that satisfy the monotone property is neces-
sarily commutative. Additionally, we can see that in
filtering that combines the filtering method satisfying
the monotone property and that which satisfies the
sequential increasing property, the result of filtering
precedently using the filtering method which satisfies the
monotone property includes that of filtering precedently
using the filtering method satisfying the sequential in-
creasing property. However, in the other combinations of
filtering methods, there is no inclusion relation between
the filtering results whose composition order is reversed.
Therefore, in such composite filtering methods, if the
execution order is changed in the filtering process, there
is no guarantee that the data to be stored before
conversion 1s also continuously stored after conversion.

3.2 Filtering Functions that Satisfy the Equiv-
alence Properties

In this subsection, we clarify the inclusion relation
between the filtering results of the composite filtering

functions whose composition order is reversed for fil-
tering functions that satisfy the equivalence properties.
First of all, we introduce the following lemmas for only
filtering functions that satisfy the equivalence properties.

Lemma 12 If filtering functions f and g satisfy the
distributed equivalence property, and f is filtering com-
posable with ¢, g is filtering composable with f, then

F(9(S)) = g(f(9)) is satisfied for all S C T. O

Lemma 13 For filtering functions f and g, if f satisfies
the distributed equivalence property, and g satisfies the
sequential equivalence property, f s filtering composable
with g, g is filtering composable with f, then f(g(S)) C
g(f(S)) is satisfied for all S C T. a

Lemma 14 For filtering functions f and g, if f satisfies
the distributed equivalence property, and g satisfies the
sequential equivalence property, f s filtering composable
with g, g is filtering composable with f, then f(g(S)) D
g(f(S)) is not necessarily satisfied for all S C T. a

Lemma 15 If filtering functions f and g satisfy the
sequential equivalence property, and f is filtering com-
posable with ¢, g is filtering composable with f, then

F(g(5)) C g(f(5) and f(g(S)) D g(f(S)) are not
necessarily satisfied for all S C T. O

Next, for selection function, ranking function, and
filtering functions that satisfy the equivalence properties,
we introduce the following lemmas to the inclusion
relation between the filtering results of the composite
filtering functions whose composition order is reversed.

Lemma 16 For filtering functions f and g, if f satisfies
the sequential equivalence property, and g is a ranking

function, then f(g(S)) C g(f(S)) and f(g(S)) D g(f(5))

are not necessarily satisfied for all S C T. O

Lemma 17 If filtering functions f and g are ranking

functions, then f(g(S)) C g(f(S)) and f(g(S)) D
g(f(S)) are not necessarily satisfied for all S CT. O

Lemma 18 For filtering functions f and g, of f s a
selection function, and g is a ranking function, then

Flg(T)) C g(f(T)) is satisfied for all S C T. O

Lemma 19 For filtering functions f and g, of f s a
selection function, and g is a ranking function, then
F(9(S)) D g(f(S)) is not necessarily satisfied for all
ScCT. O



From Theorem 2, since selection function and filtering
function that satisfies the distributed equivalence prop-
erty are equivalent, we omit the following lemmas: the
lemma on the composite function of selection function
and filtering function that satisfies the sequential equiv-
alence property; the lemma on the composite function
of ranking function and filtering function that satisfies
the distributed equivalence property; the lemma on the
composite function of selection functions.

Table 2 shows the inclusion relation between the
filtering results of the composite filtering functions whose
composition order is reversed for filtering functions
that satisfy the equivalence properties as proved by
the above lemmas. From Theorem 2, since selection
function and filtering function that satisfies the dis-
tributed equivalence property are equivalent, we describe
them in the same column and row. Table 2 indicates
that only the composite function of selection functions
1s necessarily commutative. Moreover, the inclusion
relation is identical between the case where f and ¢
satisfy the sequential equivalence or parallel equivalence
property, and the case where f and g are ranking
functions. It is therefore clarified that the inclusion
relation between filtering results of composite filtering
functions whose composition order is reversed does not
depend on the cardinality.

4 OBSERVATIONS

In this section, we address some of the filtering methods
currently applied in practice and discuss the processing
methods each filtering can apply, based on the properties
shown in the previous section.

4.1 Composition of Selection Methods

XFilter[1] filters XML documents, while NiagaraCQ[4]
categorizes the queries. They filter by keyword match-
ing, which is a selection method. WebMate[5] and
SIFT[14] extract the data if the vector product of the
vectors representing the data and the user’s preference
exceeds a particular threshold. Tapestry[6] filters by
appointing the name of other users whose preferences
resemble his/hers, which is known as the collaborative
filtering method. These methods are also forms of
filtering by selection. Table 2 shows that in filtering com-
bining these methods it is assured that the filtering result
is consistent even if the execution order is exchanged.
The following optimization can be executed by exploiting
this result. When the most-received XML data items are
in the same structure, XFilter cannot narrow down the
data to be stored due to the XML’s data structure. In
general, the larger the number of data to be processed
in filtering is, the higher the processing cost of the data
becomes; therefore, if SIFT has previously narrowed
down the data by some threshold and decreases the
number of the data to be processed by XFilter, the
filtering cost of XFilter and the entire composite filtering
can be reduced. On the other hand, when there are
many keywords in the received data, the processing cost
of STFT becomes high because the vectors representing

the data and user’s profile become large, and calculating
their product becomes complex. Thus, if XFilter has
previously narrowed down the data by using the XML
data structure, the vectors calculated by SIFT can be
made small, and it is possible to reduce the processing
cost of the entire filtering processes.

4.2 Composition of Ranking Methods

LIBRA[8] is an example of filtering by ranking. From
Table 2, there is not necessarily an inclusion relation
between the filtering results of composite filtering whose
execution order is inverted. In other words, there
is no guarantee that the filtering result i1s consistent
when changing the execution order in the filtering
process. Therefore, a more efficient execution order
should be decided upon before the filtering process
begins according to which filtering method can narrow
down the received data in the early stage, and which
filtering method can reduce the processing cost in the
first process, where there is a large amount of data to be
processed.

4.3 Composition of Selection and Ranking Meth-
ods

From Table 2, in the filtering combining selection and
ranking methods, if we interchange the execution order
while the filtering 1s in process, constant filtering results
cannot be obtained. However, it has been proved
that the filtering result of the method that precedently
filters by selection (functionally r o s) includes that of
the method that precedently filters by ranking (s o r).
Consequently, even if we interchange the method s o r
with the method r o s, the data that should be stored
by the former method s o r is also stored by the latter
method r o s. As such, even if the execution order is
changed while the other processes are using the data
from the filtering result, it is certain that the same data
1s continuously available.

On the other hand, if we interchange the method ros
with the method s o r, then the data that should be
stored by the former method ros, and ranked lower, may
not be stored by the latter method s o . However, this
interchange 1s efficient in the case where only the data
ranked higher are needed from the data that should be
stored before interchanging.

Let’s consider the case of combining Tapestry and
LIBRA. When there are few other users whose prefer-
ences resemble those of a user, or when the other users
do not provide enough evaluation values for the data
to the filtering system (these values are used to decide
which other users have preferences that most resemble
those of the current user), the method that precedently
filters by Tapestry cannot narrow down the data items
in the early stage. This occurs because Tapestry uses a
collaborative filtering method that has not learned the
user’s preference adequately nor has obtained the other
users whose preferences resemble those of the current
user. Thus, by instead using a method that precedently



filters with LIBRA’s ranking method, it is possible to
narrow down the received data to a particular number
of data items in advance, and to curb the calculation
costs of the entire filtering process. However, if the
receivers lack sufficient calculation ability and memory
capacity, it i1s difficult for LIBRA to use all the data
items’ evaluation values for the current user to calculate
those values and store them into local memory. In
such a case, if Tapestry precedently narrows down the
data items when the system obtains enough other users
whose preferences resemble those of the current user, the
number of keywords needed in LIBRA can be reduced.
In this conversion, it is assured that the data used
before conversion can be continuously available after
conversion.

4.4 Composition of the Other Methods

If filtering considers the correlation between the contents
of the data and upgrades the evaluation value of the data
when they are together, then the filtering satisfies the
monotone, sequential decreasing, and parallel decreasing
properties. On the contrary, if filtering degrades the
evaluation value of the data when they are together, then
the filtering satisfies the consistency, sequential decreas-
ing, and parallel decreasing properties[11]. Therefore,
from Table 1 and Table 2, filtering combining the
former methods, and that combining the former method
and selection method, are commutative. A consistent
filtering result can thus be obtained even if the execution
order is exchanged. However, in filtering combining the
latter methods and that combining the latter method
and ranking method, there is not necessarily an inclusion
relation between the filtering results whose execution
order is inversed.

5 CONCLUSION

In this paper, we clarified the inclusion relation between
the filtering results of composite filtering functions whose
composition order is reversed for filtering functions that
satisfy various properties. Exploiting the results in this
paper, we can implement composite filtering, considering
exchanges of the execution order in proportion to the
filtering environment. Moreover, we indicated that we
can achieve more efficient filtering processes according to
the environment by applying the mathematical founda-
tion established in this paper to filtering using multiple
methods.

Our future work includes the following:

e Constraints on the composite function

In the composite filtering functions given in this
paper, there is not necessarily an inclusion relation
between the filtering results whose execution order
is inverted. However, by adding specific constraints
to each filtering function in composition, the in-
clusion relations dealt with in this paper may be
satisfied after composition. We will define such
constraints.

e Deciding the optimum execution order

When applying the results in this paper, 1t is neces-
sary to examine the effect of various factors, such as
the broadcast environment and the characteristics of
filtering methods, on the processing cost. Therefore,
we must establish a mechanism to evaluate the
efficiency of each execution order, considering the
environmental factors, and to automatically decide
the most efficient one.
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