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Abstract

In recent years, due to the increasing populariza-
tion of various broadcast services, there has been an
mcreasing demand for information filtering techniques.
Although filtering methods that have been proposed filter
data in their own ways, mathematical representation of
these methods does not exist. Consequently, it s not
possible to qualitatively evaluate various filtering meth-
ods, to optimize processing methods in filtering, or to
destgn a declarative language for filtering processes. In
our previous work we have defined a filtering function
that represents filtering as a function, and clarified the
properties of different filtering methods. In practice,
current filtering methods actually consist of multiple
methods. In this paper, we make it possible to qualita-
twely represent those filtering methods by introducing
the concept of composition into the framework of filter-
g function. Moreover, we reveal the characteristics
of those combined filtering methods by clarifying the
properties of composite filtering functions.

1. Introduction

In recent years, due to the start of new satellite
broadcast services and broadcast digitalization, a large
number of broadcast services are being supplied[11]. In
this environment, the amount of data and the variety
of data broadcast are rapidly increasing. However,
since users often need only a small amount of specific
data, it is very difficult to retrieve the information
they are interested in from a large range of broadcast
data. Therefore, various mechanisms that automatical-
ly filter data and a user-request description language
for filtering have been proposed[l, 2, 6, 7, 8 9].
These filtering mechanisms filter data using different
methods such as keyword matching or vector operation.
However, no mathematical foundation for qualitatively
representing these filtering processes exists. Thus,
it is not possible to qualitatively evaluate various
filtering methods, to optimize processing methods in

filtering, or to design a declarative language for filtering
processes. In [12], we defined a fillering function
that expresses filtering as a function, and we made
it possible to represent the properties of filtering by
the constraints that are satisfied by the function.
Moreover, by showing the inclusion relation between
the constraints representing the properties of filtering,
we clarified the relationship between the properties of
various filtering methods.

In [12], we dealt with filtering methods represented
by a single filtering function that satisfies specific
properties. However, an actual filtering method gen-
erally consists of multiple methods. In this paper, we
clarify properties of the composite filtering functions to
reveal the characteristics of filtering methods consisting
of several methods. By introducing the concept of
composition into the framework of filtering functions,
we are able to qualitatively represent complex filtering
methods commonly used in practice. Furthermore,
by showing the interrelation between properties of
composite filtering functions, we make it possible to
judge whether one filtering that satisfies a property
also satisfies another one, thereby making 1t possible
to replace the processing method with a more efficient
one according to the environment.

This paper is organized as follows. Section 2 ex-
plains the general outline of filtering functions. Section
3 describes the conditions that composite filtering
functions need to satisfy to be filtering functions.
Section 4 reveals the properties of composite filtering
functions for various combinations of filtering functions
that satisfy different properties. Section b considers
the filtering methods currently applied in practice and
related work through the results clarified in this paper.
Finally, we provide conclusions in Section 6.

2. Filtering Function

In this section, we outhne filtering functions, which
form the foundation of this study. First of all, we
categorize the processing methods of filtering into
several patterns, then we explain the definition of a
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filtering function that represents filtering as a function,
and denote several properties of filtering defined as the
constraints that a filtering function satisfies.

In our study, we categorize the processing methods
in the real world into the following four patterns:

e Sequential processing
In a system that uses sequential processing, the
newly received data and the previous filtering
results are merged and filtered.

e Batch processing
In a system that uses batch processing, a receiver
accumulates broadcast data and filters them in

bulk.

e Distributed processing
In a system that uses distributed processing, the
received data set is divided into multiple arbitrary
data subsets, and each subset is filtered separately
before the results are merged.

e Parallel processing
In a system that uses parallel processing, the
merged filtering results of distributed processing
are re-filtered.

Let T be a set of data items. A filtering function
is defined as a function f on 9T (hat satisfies the
following two properties for an arbitrary 7 C T !.

f(mHcT.
fUT)) = (1)

The following properties of filtering functions are de-

fined.

D: decreasing
ID: idempotent

SI: Sequential Increasing
F(SuT) C f(SUfT)).
SD: Sequential Decreasing
F(SUT) 2 f(SUAT)).
SE: Sequential Equivalence
F(SUT) = f(SUfT)).
DI: Distributed Increasing
F(suT) C f(S)uU f(T).
DD: Distributed Decreasing
F(SUT) > F(S)U f(T).
DE: Distributed Equivalence
FSUT) = f(S)uU K(T).

PI: Parallel Increasing

1In this paper, A C B means that A is a subset of B (including
the case where A = B).

Co S—efamog)

F(SUT) C ffF(S)U f(T)).
PD: Parallel Decreasing
F(SUT) D f(fF(S)U f(T)).
PE: Parallel Equivalence
J(SUT) = F(F(S)U F(T)).
M: Monotone
if SCT then [f(S)C f(T).
C: Consistency
FS)D f(suTns.

Here, S and T" are arbitrary subsets of T.

Figure 1 shows the relationship between these prop-
erties of the filtering function proved in our previous
work. The arrows in Figure 1 represent the inclusion re-
lation between the properties, and “x” represents that
there is no inclusion relation between them. The arrows
between “M, DD” and “SD” mean that the filtering
function that satisfies the monotone property (M) (or
the distributed decreasing property (DD), which is
equivalent to M) also satisfies the sequential decreasing
property (SD), and that the filtering function that
satisfies the sequential decreasing property (SD) does
not necessarily satisfy the monotone property (M) (and
the distributed decreasing property (DD)). Moreover,
the properties in an ellipse, for example “M, DD,”
are equivalent. The rectangular frame that includes
some ellipses represents the property that satisfies
all properties in the frame. The rectangular frame
in Figure 1 means that the filtering function that
satisfies the parallel decreasing property (PD) and
the sequential increasing property (SI) (or PI, DI, C,
which are equivalent to SI) also satisfies the sequential
decreasing property (SD). However, since it has not
vet been proved whether the filtering function that
satisfies only the parallel decreasing property (PD) also
satisfies the sequential decreasing property (SD), it is
represented by dotted line.



PE
(Pl and PD)

DE
(DI and DD)

The sequential equivalence property (SE) signifies
that the filtering results of batch processing and se-
quential processing are equivalent. Similarly, the
distributed equivalence property (DE) signifies that
the filtering results of batch processing and distributed
processing are equivalent, and the parallel equivalence
property (PE) signifies that the filtering results of
batch processing and parallel processing are equivalent.

From the relationship between the properties shown
in Figure 1, we can show the interrelation between
those equivalence properties in Figure 2. Figure 2
shows that if the filtering results of batch processing
and distributed processing are equivalent, meaning
that the distributed equivalence property is satisfied,
then the filtering results of sequential processing and
parallel processing are also equivalent. This means
that the sequential equivalence and parallel equivalence
properties are also satisfied. Similarly, if the filtering
results of batch processing and sequential processing
are equivalent, then the filtering result of parallel
processing is also equivalent. Indeed, if the filtering
results of batch processing and parallel processing are
equivalent, the filtering result of sequential processing
is also equivalent. From the relationship between the
properties shown in Figures 1 and 2, we are able
to judge whether one filtering method that satisfies
a specific property also satisfies another one, and to
replace the processing method with a more efficient
one according to the environment.

3. Composite Filtering Function

Generally, most filtering methods actually consist of
combinations of methods. In this section, we show the
conditions needed for a composite filtering function to
be a filtering function.

In general, for functions f : Dy — Ds and g :
Dy — D,, composing a function h Dy — Ds,

v | fe) g(e)  fly(=))

¢ ¢ ¢ ¢
{a} | {a} & ¢
{0y | ey {b} {6}
{a,6} | {a} A{ab} {q}

which is established by h(z) = f(g(z)), is called the
composition of f and g, denoted as h = f og. The
function h is called the composite function of f and
g. Here, we call the composite function of filtering
functions the composite filtering function. In addition,
when f: D1 — Ds, we designate

>

Im(f) ={f(X)|X € D1}

as the range of f.

Here, we note that a composite function of filtering
functions is not necessarily always a filtering function.
Table 1 shows an example of filtering functions f and
g, whose composite function f o ¢ does not satisfy the
idempotent property.

For filtering functions f and g, we call “f can
form a filtering composite with ¢° when the composite
function fog is a filtering function. Generally, the fact
that f can form a filtering composite with g does not
necessarily mean that ¢ can form a filtering composite
with f. For f and ¢ in Table 1, for example, the former
is not satisfied, but the latter is satisfied. Furthermore,
we define that “f is constant to ¢,” as f(X) = g(X)
is satisfied for all X € Im(f og). Here, we present the
following theorem:

Theorem 1. For filtering functions f and g, the fact that
f can form a filtering composite with g is equivalent to that
f 1s constant to g.

Proof.

(=) There exist Xo C T and Yo = f(¢(Xo)). When f
can form a filtering composite with g, assume that f(Y5) #
g(Yo) for Xo and Y5.

Here, at least one of the inequalities ¥y # f(Yp) and
Yo # ¢g(Yo) is satisfied. Therefore, since f and g satisfy the
decreasing property, it is deduced that

Yo #  flg(Y0))
fle(Xo)) #  fla(£(9(X0)))). (1)
However, this does not satisfy the idempotent property of
fog, which contradicts the theory that f can form a filtering

composite with g.
(<) First of all, we indicate that for all X € Im(foyg),

X = (X)) =9(X) (2)



is satisfied when f(X) = g(X). There exist Xo C T and
Yo = f(9(Xo)). If we assume that Y5 # f(Yo) = ¢(Yo) for
Xo and Yo, then we derive that

f9(Xo)) # f(f(9(Xo))), (3)

which does not satisfy the idempotent property of f.
Therefore, since (3) contradicts that f is a filtering function,
(2) is formed.

IfX =f(X)=yg(X)foral X € Im(fog), then X =
f(g(X)) is implied. Thus, the composite function f og
satisfies the idempotent property. Additionally, since f and
g satisfy the decreasing property, X D g(X) D f(g(X)) is
deduced. Consequently, f o g also satisfies the decreasing
property. i

Next, we present the following theorem about whether

a filtering function that satisfies a certain property can
form a filtering composite:
Theorem 2. For filtering functions f and g, if g satis-
fies the sequential increasing property (equivalent to the
parallel increasing, distributed increasing, or consistency
property), then f can form a filtering composite with g.

Proof. Assume that ¢ satisfies the consistency property.
If X =g(5), Y=f(X)for SCT, then

9(X)=g(9(8)=g(S)=X,  (-ID)

S =f(f(X)=f(X)=Y. (.ID)
Since S, X and Y satisfy S D X D VY due to the decreasing
property,

g(Y)

U

g(Yus)ny
= g¢g(S)NY
= XnYy=Y (4)

is deduced. Also, as g(Y) C Y from the decreasing
property, g(Y) = Y is derived from (4). Therefore, f(Y) =
g(Y') is shown. Since f is constant to g, f can form a
filtering composite with g from Theorem 1. a
We can confirm that the inverse is not satisfied.

For filtering functions f and ¢, when g does not
satisfy the sequential increasing property (equivalent
to the parallel increasing, distributed increasing, or
consistency property), it is known whether f can form
a filtering composite with ¢ by determining whether f
is constant to g from Theorem 1.

4. The Properties of Composite Filtering
Functions

In this section, we clarify properties of composite
filtering functions for various combinations of filtering
functions that satisfy the properties denoted in Subsec-
tion 2.2. In Subsection 4.1, we show the properties for
the combinations of the filtering functions that satisfy
the increasing or decreasing properties. In Subsection
4.2, we present the properties for the combinations
of the filtering functions that satisfy the equivalence
properties.

For the properties denoted in 2.2, excepting equiva-
lence properties, the monotone (M), sequential in-
creasing (SI), sequential decreasing (SD), and parallel
decreasing (PD) properties are not equivalent to each
other. In this subsection, we discuss the composite
filtering functions for all combinations of the filtering
functions that satisfy those four properties, and intro-
duce the following lemmas to reveal their properties.
We omit the proofs of the lemmas.

Lemma 1. For filtering functions f and g, if f and ¢
satisfy the monotone property, and f can form a filtering
composite with g, then fog satisfies the monotone property.

O
Lemma 2. For filtering functions f and g, if f satisfies
the monotone property, and g satisfies the sequential
increasing property, then f o g does not necessarily satisfy
the monotone or sequential increasing property. a
Lemma 3. For filtering functions f and g, if f satisfies
the monotone property, g satisfies the sequential decreasing
property, and f can form a filtering composite with g, then
fog does not necessarily satisfy the monotone or sequential
decreasing property. a
Lemma 4. For filtering functions f and g, if f satisfies
the monotone property, g satisfies the parallel decreasing
property, and f can form a filtering composite with g, then
f o g does not necessarily satisfy the monotone or parallel
decreasing property. a
Lemma 5. For filtering functions f and g, if f satisfies
the sequential increasing property, g satisfies the monotone
property, and f can form a filtering composite with g, then
f o g does not necessarily satisfy the sequential increasing
or monotone property. i
Lemma 6. For filtering functions f and g, if f and g¢
satisfy the sequential increasing property, then f o g does
not necessarily satisfy the sequential increasing property. O
Lemma 7. For filtering functions f and g, if f satisfies
the sequential increasing property, g satisfies the sequential
decreasing property, and f can form a filtering composite
with ¢, then fog does not necessarily satisfy the sequential
increasing or sequential decreasing property. a
Lemma 8. For filtering functions f and g, if f satisfies
the sequential increasing property, g satisfies the parallel
decreasing property, and f can form a filtering composite
with ¢, then fog does not necessarily satisfy the sequential
increasing or parallel decreasing property. a
Lemma 9. For filtering functions f and g, if f satisfies
the sequential decreasing property, g satisfies the monotone
property, and f can form a filtering composite with g, then
f o g does not necessarily satisfy the sequential decreasing
or monotone property. i
Lemma 10. For filtering functions f and g, if f satisfies
the sequential decreasing property, and g satisfies the se-
quential increasing property, then fog does not necessarily
satisfy the sequential decreasing or sequential increasing



f\yg M ST SD PD
M M -M, —=SI =M, =SD -M, =PD
ST M, =SI =S =SI, =SD =SI, =PD
SD -M, =SD =8I, =SD -SD -SD, =PD
PD -M, -PD =8I, -PD =SD, =PD -PD
property. i

Lemma 11. For filtering functions f and g, if f and ¢
satisfy the sequential decreasing property, and f can form
a filtering composite with g, then fog does not necessarily
satisfy the sequential decreasing property. a
Lemma 12. For filtering functions f and g, if f satisfies
the sequential decreasing property, g satisfies the parallel
decreasing property, and f can form a filtering composite
with ¢, then fog does not necessarily satisfy the sequential
decreasing or parallel decreasing property. a
Lemma 13. For filtering functions f and g, if f satisfies
the parallel decreasing property, g satisfies the monotone
property, and f can form a filtering composite with g, then
f o g does not necessarily satisfy the parallel decreasing or
monotone property. i
Lemma 14. For filtering functions f and g, if f satisfies
the parallel decreasing property, and g satisfies the sequen-
tial increasing property, then f o g does not necessarily
satisfy the parallel decreasing or sequential increasing
property. i
Lemma 15. For filtering functions f and g, if f satisfies
the parallel decreasing property, g satisfies the sequential
decreasing property, and f can form a filtering composite
with ¢, then f o g does not necessarily satisfy the parallel
decreasing or sequential decreasing property. a
Lemma 16. For filtering functions f and g, if f and ¢
satisfy the parallel decreasing property, and f can form a
filtering composite with g, then f o g does not necessarily
satisfy the parallel decreasing property. a

Table 2 shows the properties of composite filtering
functions for all filtering function combinations that
satisfy the increasing or decreasing properties as proved
by the above lemmas. In Table 2, each element repre-
sents the property of the composite filtering function
fog when f and ¢ respectively satisfy the properties in
the columns and rows, and when f can form a filtering
composite with ¢g. Additionally, “=” means that the
composite filtering function does not necessarily satisfy
the property added it.

From Table 2, only when the filtering functions
f, g that satisfy the monotone property are combined,
the composite filtering function f o g maintains the
properties satisfied by the original functions f, ¢. On
the other hand, if the filtering functions f, ¢ that

satisfy the property other than the monotone property
are combined, then the composite filtering function fog
does not necessarily maintain the properties satisfied
by the original functions f, g.

In the previous subsection, we have shown the
filtering functions that satisfy only the increasing or
decreasing properties. In this subsection, we clarify
the properties of the composite functions of the filter-
ing functions that satisfy the distributed equivalence,
sequential equivalence, or parallel equivalence property.

The following lemmas relate to the composition
of the filtering functions that satisfy the equivalence
properties:

Lemma 17. For filtering functions f and g, if f and
g satisfy the distributed equivalence property, then fog
satisfies the distributed equivalence property.

Proof. For f and g that satisfy the distributed equiva-
lence property, we prove that

flg(SuT)) = flg(S) U fg(T)) (5)
is satisfied. In [13],

VS, YT, f(S UT) = f(S)U f(T)
— 3X,VS, f(5)=SNX,
VS, YT, g(S UT) = ¢(S) U ¢(T)
— 3V,¥S,¢(S)=5nY
are proved. Thus, if we assume that X = f(T) and ¥V =
g(T), then f(A)=ANX, g(A)=ANY forall A C T. For

both sides in (5), the following equations are respectively
derived:

flg(SuT))

= f((SuT)NY)
F(SNY)u(TnY))
(SNY)yu(TnY))nX

= (SNYnX)u(TnYynX), (6)
F(9(8) U f(g(T))
fiSNY)yuf(rny)
(Snynx)u(I'nynx). (7)

Therefore, from (6) and (7),

fla(suT)) = f(g(5)u f(g(T))

is deduced. a
Lemma 18. For filtering functions f and g, if f satisfies
the distributed equivalence property, and g satisfies the
sequential equivalence property (equivalent to the parallel
equivalence property), then f o g does not necessarily
satisfy the distributed equivalence, sequential equivalence,
or parallel equivalence property. a



Lemma 19. For filtering functions f and g, if f satisfies
the sequential equivalence property (equivalent to the par-
allel equivalence property), and g satisfies the distributed
equivalence property, then f o g satisfies the sequential
equivalence and parallel equivalence properties.

Proof. Since the sequential equivalence property is
equivalent to the parallel equivalence property from Figure
2, we prove that

fla(suT)) = flg(SU fg(T)))) (8)

for f that satisfies the sequential equivalence property, and
g that satisfies the distributed equivalence property. In [13],
it is proved that

VS VT, g(SUT)=g(S)Ug(T)
— 3JX VS, ¢(S)=5nX.

Hence, if we assume that X = ¢g(T), then g(4) = AN X for
all A C T. For both sides in (8), the following equations
are respectively derived:

flg(SuT))
f(suT)
F((SnX)
F((SnX)
flg(S U f(g(T))))
S(SUf(TnX))nX)
F(SNX)u(f(TNnX)NX)). (10)

xX)
(T'AX))
(T A X)), (9)

N
U
U

Here, we introduce the following lemma:

Lemma 20. Forallsets T and X, f(TNX)=
f(I'n X)N X is satisfied.
Proof.
i) It is trivial that f(T'NX) D f(I'NnX)n X.
ii) We prove that f(TNX) C f(TNX)NX.
From the decreasing property, for all z €
(TN x),

ref(fnX)cT'nXCX

crxe f(nX)nX.
From i) and ii), this lemma is proved. O

Therefore, from (10),

F(9(S U F(g(T)))
= A(SAX)UHTNX)) (11)

is formed, and from (9) and (11), we deduce

flg(5uT)) = flg(SU fg(T))))-

O
For filtering functions f and g, if f satisfies
the sequential equivalence property (equivalent to the par-
allel equivalence property), and g satisfies the distributed
equivalence property, then fog does not necessarily satisfy
the distributed equivalence property. a

Lemma 21.

f\yg DE SE, PE
DE DE —-DE, —SE, —PE
SE, PE | SE, PE, -DE -SE, -PE

Lemma 22. For filtering functions f and g, if f and ¢
satisfy the sequential equivalence property (equivalent to
the parallel equivalence property), then f o g does not
necessarily satisfy the sequential equivalence or parallel
equivalence property. a

Table 3 shows the properties of composite filtering
functions for all filtering function combinations that
satisfy the equivalence properties as proved by the
above lemmas. From Table 3, we know that if the filter-
ing function ¢ that satisfies the distributed equivalence
property is precedently applied to the data set, then the
composite filtering function fog maintains the property
satisfied by the subsequently applied function f. This
is true even if the filtering function f satisfies any one
of the distributed equivalence, sequential equivalence,
and parallel equivalence properties.

5. Observations

In this section, we address some filtering methods
currently applied in practice, and discuss properties
of those methods by applying the notion of composite
filtering functions.

The filtering methods that decide whether the data
should be stored per data item (for example, the filter-
ing by keyword matching or the expiration date of the
data) do not consider the correlation between the data
filtered together. Thus, those filtering methods satisfy
the distributed equivalence property (equivalent to the
monotone and consistency properties)[12]. Therefore,
from the results shown in 4.2, the filtering results
of batch processing, distributed processing, sequential
processing and parallel processing are equivalent since
the combined method of those filtering methods satis-
fies the distributed equivalence property.

On the other hand, some filtering methods change
the evaluation value of the data according to the
correlation between the data filtered together. These
types of filtering methods can be divided into the
following two methods. The first type of filtering
methods upgrade the evaluation value of the data when
particular data are filtered together. Those methods



consider the correlation between the data of serialized
broadcast, or segmentalized data, etc. The second
type of filtering methods downgrade the evaluation
value of the data when particular data are filtered
together. Those methods downgrade, for example,
the evaluation value of the existing data when their
updated data are received, such as data on weather
forecasts or TV programs. The first methods satisfy
the monotone, sequential decreasing, and parallel de-
creasing properties, but not the consistency property.
The second methods satisfy the consistency, sequential
decreasing, and parallel decreasing properties, but not
the monotone property[12].

From the results of 4.1, the composite functions of
the filtering functions satisfy the monotone property
only if the filtering functions satisfy the monotone
property. Otherwise, whichever combination of prop-
erties the filtering functions satisfy, the composite
filtering functions may not necessarily maintain the
properties satisfied by the original functions. Conse-
quently, if the methods that upgrade the evaluation
value of the data when particular data are filtered
together are combined, then the combined method
satisfies the monotone property. Moreover, since it
also satisfies the sequential decreasing and parallel
decreasing properties shown in Figure 1, it has the
same characteristics as the original filtering methods.
On the contrary, if the methods that downgrade the
evaluation value of the data when particular data
are filtered together are combined, then the combined
method does not necessarily satisfy the properties
satisfied by the original functions. Therefore, the
combined method’s characteristics differ from those of
the original methods. Similarly, in the case of the
combining the method that upgrades the evaluation
value of the data with the method that downgrades
the value when particular data are filtered together, the
characteristics of original methods do not take over.

Bell and Moffat[3] propose a filtering method based
on tf-idf. They intend to decrease the calculation
time and memory capacity needed, and to improve
the throughput and scalability by incorporating various
information retrieval and filtering methods. Their
method satisfies the distributed equivalence proper-
ty, for it does not consider the correlation between
the data filtered together, and stores the data if its
evaluation value, which is calculated per data item,
exceeds a certain threshold. In the same way, STFT[15]
and WebMate[5] use tf-idf and thresholds. SIFT is
applied to USENET news, and WebMate recommends
the Web pages. Moreover, Callan[4] verifies the effect
of threshold value on precision and recall, and proposes

an algorithm to automatically decide the appropriate
threshold value.

When combining those filtering methods, a low-
cost method can be used by appropriately combining
strategies whose threshold values or vectors expressions
are different. For example, the processing cost can be
reduced by using pre-processing by the filtering with
low threshold value before precise filtering with high-
dimensional vector operations. Here, since the above
filtering methods satisfy the distributed equivalence
property, all combinations of these filtering methods
satisfy the distributed equivalence property. Therefore,
under those methods, the characteristics of the original
methods remain. Moreover, since the filtering results
of batch processing, distributed processing, sequential
processing, and parallel processing are equivalent, the
processing cost can be reduced further by changing the
processing method according to the environment, such
as the number and disposal capacity of the receivers,
or network bandwidth.

ProfBuilder[14] filters data by ranking method ac-
cording to the user’s profile if the user selects the
content-based filtering option. This filtering satisfies
the consistency and sequential decreasing properties
(equivalent to the sequential equivalence property)
while the user’s profile is not updated. Therefore,
from the results given in this paper, a combined
filtering method of this type does not necessarily
satisfy the sequential equivalence property. In such
filtering, there is no assurance that the filtering result
of batch processing is equivalent to that of distributed
processing, sequential processing, or parallel process-
ing. In other words, it is impossible to change a
processing method in the process of filtering while
attempting to maintain the equivalence of filtering
results. Consequently, we must sufficiently examine
the filtering environment during implementation, and
decide the most appropriate processing method. How-
ever, if we combine ProfBuilder after the filtering
that satisfies the distributed equivalence property,
then it satisfies the sequential equivalence and parallel
equivalence properties. Thus, the filtering results of
batch processing, sequential processing, and parallel
processing are equivalent. In such filtering, it 1s
possible to keep the ranking up to date by sequential
processing, and the processing cost of the receivers and
the necessary network bandwidth can be reduced by
parallel processing.

ATS (Active Information Store)[10] filters broadcast
data by two steps. AIS precedently filters the received
data by keyword matching, and subsequently decides
the data to be stored by the method that downgrades
the evaluation value of the data when particular data
are filtered together. The precedent processing satisfies



the distributed equivalence property because it filters
per data item, and the subsequent processing satisfies
the sequential equivalence property. Therefore, AIS
can be regarded as a combined method of the filtering
that satisfies the distributed equivalence property and
the filtering that satisfies the sequential equivalence
property. Thus, since AIS satisfies the sequential
equivalence and parallel equivalence properties from
Table 3, the filtering results of batch processing, se-
quential processing, and parallel processing are equiva-
lent. Consequently, the load on receivers can be re-
duced if the system filters the data after accumulating
a certain amount. Parallel processing can also be done
if there are many channels which broadcast data.

6. Conclusions and Future Work

In this paper, we have shown a condition for com-
posite filtering functions to act as filtering functions
and revealed characteristics of composite functions
of filtering functions that satisfy various properties.
By introducing the concept of composition into the
framework of filtering functions, we can qualitatively
represent complex combined methods of filtering. Ad-
ditionally, we classified the filtering methods currently
used in practice according to their properties, and
discussed the processing methods that can be replaced
while preserving the equivalence of filtering results. We
can achieve more efficient filtering processes according
to the environment by applying the mathematical foun-
dation established in this paper to filtering methods
currently used in practice.

Our future work includes the following:

e Adding constraints to the composite filtering func-
tion
Most composite filtering functions denoted in this
paper do not necessarily hold properties satisfied
by the original functions. Therefore, we must
know when we may combine some methods cur-
rently used in practice. However, by placing
specific constraints on each filtering function dur-
ing composition, the properties of the original
functions may be maintained after composition.
We will define such constraints.

e Defining new properties
To present any filtering methods, it is necessary
to introduce filtering functions that satisfy new
properties that are not given in this paper. In
particular, we plan to define new properties that
have the same feature as the monotone property:
the property of a filtering function that holds after
combination. Moreover, by discovering character-
istics of the new property, we clarify contributing

factors in cases where the original properties do

not hold.
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