
Ubiquitous Chip: a Rule-based I/O Control
Device for Ubiquitous Computing

Tsutomu Terada1, Masahiko Tsukamoto1, Keisuke Hayakawa2, Tomoki
Yoshihisa1, Yasue Kishino1, Atsushi Kashitani2, and Shojiro Nishio1

1 Graduate School of Information Science and Technology, Osaka University, Japan
2 Internet System Research Laboratories, NEC Corp., Japan

Abstract. In this paper, we propose a new framework for ubiquitous
computing by rule-based, event-driven I/O (input/output) control de-
vices. Our approach is flexible and autonomous because it employs a
behavior-description language based on ECA (Event, Condition, Action)
rules with simple I/O control functions. We have implemented a proto-
type ubiquitous device with connectors and several sensors to show the
effectiveness of our approach.

1 Introduction

As a result of the development of computer software/hardware technologies, the
processing power and storage capacity of personal computers are rapidly increas-
ing. At the same time, technological advances are contributing to the continued
miniaturization of computers and component devices, such as microchips, sen-
sors, and wireless modules[5][9][10]. In the near future, these devices will be
embedded into almost any artifact and provide various services to support hu-
man daily life. This computing style is called ubiquitous computing. In ubiquitous
computing environments, we can acquire various services with multiple intercon-
nected computers that are embedded everywhere[4][12][13].

These embedded computers should automatically perform information ex-
changes and physical actions in response to surrounding circumstances. Although
these computers may have low processing power and small memory, they must
have the flexibility to change their function dynamically. Consequently, we ap-
ply rule-based technologies to describe the behavior of these ubiquitous com-
puters. In this paper, we propose a new style of computing with rule-based
I/O (input/output) control devices for constructing ubiquitous computing en-
vironments. We call this device the ubiquitous chip. The remainder of this pa-
per is organized as follows. Section 2 outlines rule-based ubiquitous computing,
presents several related works, and describes the design of the behavior descrip-
tion language for the proposed devices. Section 3 explains the software/hardware
architectures of the ubiquitous chip, and Section 4 describes the application de-
velopment environments for the ubiquitous chip. Section 5 presents several ex-
amples of its application and Section 6 sets forth the conclusion and planned
future work.

2 Rule-based Ubiquitous Computing

In conventional computing, a user operates systems with input devices such as a
mouse and a keyboard, and acquires computational results with output devices
such as a display and speakers. On the other hand, since embedded computers
are essentially invisible and must work without these conventional input/output
devices, they need to exchange information and perform physical actions auto-
matically in response to surrounding circumstances. Here, we define the following
three characteristics, which are requirements for ubiquitous computers:

1. Autonomy: computers work automatically without human operation
2. Flexibility: computers are applied to various purposes
3. Organic cooperation: complex behaviors are achieved by organic coordi-

nation with multiple computers

Most previous prototyps of ubiquitous computing environments did not com-
pletely fulfill these requirements. For example, although the devices of Aware
Home Project[1] and the Active Badge system[11] realize important applications
for ubiquitous computing, they have been developed for one special purpose and
are not intended for reuse in other applications.

On the other hand, there are several projects to construct a common frame-
work and device. Smart-Its[2] is small computing device that consists of two
independent boards, a core board that consists mainly of processing and com-
munication hardware and a sensor board containing a separate processing unit,
various sensors, and actuators. Motes[3], MICA[7], and U-cube[6] are also small
ubiquitous devices which are separated into two units; a core unit and other (sen-
sor) units. These devices have enough flexibility because we can customize the
system configurations by changing attached sensors and other devices. However,
in these devices, since running programs are closely related to device configura-
tions, we cannot change their functions or attached devices dynamically while
the programs are running. Therefore, it is difficult to customize the behaviors of
embedded devices in response to the user. Moreover, since applications are devel-
oped in a C-like programming language, it is difficult for public users to program
or to customize applications. From this point of view, previous devices lack sim-
plicity in programming and the flexibility/autonomy in terms of changing the
functionality of a device dynamically.

To construct flexible, scalable, and easy exploitable ubiquitous computing en-
vironments, there is a need for a general device and an architecture that fulfills
above three requirements. Consequently, to present our new device for ubiq-
uitous computing, we employ a system design philosophy that consists of two
characteristics: the separation between the I/O control and the attachments, and
the rule-based approach.

As for the former one, the separation helps to achieve a flexible system con-
figuration by changing attached devices (other devices in related works have the
same advantage). Moreover, the proposed device plays the role of a network hub
that receives signals from multiple devices such as sensors, and sends signals

to multiple devices such as actuators. We can develop the device with a low-
processing-power chip because the most of primary responsibility of the device
is limited to a circuit switching.

In regard to the latter one, we apply the rule-based (event-driven) principle
to the behavior description of ubiquitous computers because a person generally
comprehends an event in the real world as a causal relation (event and action).
We use ECA rules for the event-driven programming language. An ECA rule
consists of the following three parts:

EVENT(E): Occurring event
CONDITION(C): Conditions for executing actions

ACTION(A): Operations to be carried out

ECA rules have been used to describe the behaviors of active databases.
An active database is a database system that carries out prescribed actions in
response to a generated event inside/outside of the database[14]. Using ECA
rules, we can achieve the following advantages:

– As a consequence of their simplicity, we can program applications easily and
intuitively. Anyone can construct and change applications for various devices
embedded everywhere to enrich daily-life.

– We can change a full/part of a program dynamically because applications
are described as a set of ECA rules, and each rule is stored independently
in the device. This characteristic also enables users to customize behaviors
of devices easily in response to users’ requests.

– ECA rules in our system are described as a short-bit string. Therefore, we
can send ECA rules as a message to devices via the network.

– Since ECA rules can be processed with a step-by-step approach, we can
process rules with high efficiency (see 3.2).

2.1 Language Design of an ECA Rule

In conventional active databases, database operations such as SELECT, IN-
SERT, DELETE, and UPDATE are considered events in ECA rules. Further,
active databases can carry out actions only concerning database operations.
Since ubiquitous computers may have little processing power and small memory,
we must simplify the language specification of ECA rules while maintaining the
ability to fulfill various requirements in ubiquitous computing environments.

Consequently, we decided that ECA rules are almost always used for I/O
control. In other words, the on/off states of an attached switch and inputs from
a sensor are handled as “input signals.” In addition, output operations such as
ringing a buzzer and turning on an LED (Light Emitting Diode) are handled as
“output signals.” In this way, a ubiquitous chip works almost for I/O control,
and various devices are attached to the ubiquitous chip, as shown in Figure 1. In
this figure, a ubiquitous chip evaluates the input from these sensors and devices,
and outputs signals to connected devices. Moreover, a ubiquitous chip features

Appliance
PC

Wireless
Communication
Device

LED

Other Computers
Buzzer

Button

Fig. 1. Ubiquitous chip with connected devices

registers for storing the internal state and includes a flash memory for storing
ECA rules. In addition, it has serial ports to communicate with other ubiquitous
chips and has multiple timers for flexible timer functions.

Based on this principle, we define the events available in our system as shown
in Table 1. There are two types of inputs to a ubiquitous chip: one is packet
reception via a serial port, while the other is an input from a sensor via a
normal port. When a ubiquitous chip receives a packet, the system generates
a RECEIVE event. As for inputs from sensors, the system deals with the port
state as conditions to execute actions. Therefore, the system allows ECA rules
to be described without any events for executing actions by depending on the
port state only.

We can specify the port and internal states in the condition part of the ECA
rules. The system allows the description of multiple conditions and executes
actions when all of the conditions are satisfied.

Actions provided by the system are shown in Table 2. The OUTPUT action
changes the on/off state of each port to control connected devices such as a
buzzer and an LED. The OUTPUT STATE action changes the internal states,
while the TIMER SET action creates a new timer by specifying the interval of
the timer and a once/repeat flag. The SEND MESSAGE action sends a message
that has a specific ID via a serial port. Since another ubiquitous chip generates a
RECEIVE event on receiving this message, cooperation between ubiquitous chips
is achieved using this event and the action. The SEND COMMAND action sends
the control commands shown in Table 3. The HW CONTROL action controls the
hardware. This action controls a general LED (described in Section 3.1), power
saving functions, and a relay to switch serial ports. We can describe multiple
actions with an ECA rule, and these actions are executed in a sequential order.

Table 1. Events

Name Contents

RECEIVE Data reception via the serial port
TIMER Firing a timer
NONE Evaluate conditions at all times

Table 2. Actions

Name Contents

OUTPUT On/off control of output ports
OUTPUT STATE On/off control of state variables

TIMER SET Setting a new timer
SEND MESSAGE Sending a message

SEND COMMAND Sending a control command
HW CONTROL Hardware control

Table 3. Commands for the SEND COMMAND

Name Contents

ADD ECA Adding a new ECA rule
DELETE ECA Deleting specific ECA rule(s)

REQUEST ECA Requesting a specific ECA rule

2.2 Binary Coding

ECA rules are translated to the binary format according to regulations shown
in Figure 2. Basically, an ECA rule consumes four bytes (two bytes for Event
and Condition, two bytes for Action). However, since the system allows the
description of multiple conditions and multiple actions, we can describe a max-
imum of two conditions in a rule by switching on a multi-condition flag. We
can also describe any number of actions by switching continue flags on. The
format of each action varies by type. The second bit of the action discrimi-
nates the OUTPUT/OUTPUT STATE actions from other actions. If the OUT-
PUT/OUTPUT STATE actions are selected, the next 14 bits specify the output
state. Otherwise, the next three bits specify the type of action and the remaining
11 bits are used to describe the action’s content. For example, an ECA rule that
states, “When INPUT1 and INPUT5 are ON and INPUT2 is OFF, the system
fires a timer five seconds later,” is translated as the four-byte binary format
”0x91 0x13 0x49 0x15.”

ActionxxConditionxx1 ActionxxConditionxx1

Event Condition Action

1421 13 1 1

Event ID
00: None
01: Timer
10: Receive

MaskRxxValue MaskRxxValue

None
1 1 15 5

MaskxxRValue MaskxxRValue

Input/State Flag

0:Input
1:State

1 25 5
Timer

TimerID

MaskxxxValue MaskxxxValue

35 5
Receive

MessageID

C
o
n
tin
u
e
 F
la
g

Action Flag
0: Output/OutputState
1: Others

MaskxxValue MaskxxValue

Actionxxx Actionxxx

xxx xxxxRxxx xxx xxxxRxxx

aaaannxRxxx aaaannxRxxx

RRRRRRRRxxx RRRRRRRRxxx

Control Commandxxx Control Commandxxx

1 16 6
Output/OutputState

Input/State Flag Offset Flag

3 11

Others

001: TIMER
010: SEND_COMMAND
011: SEND MESSAGE
100: HARDWARE_CONTROL

Action ID

2 1 11 2 4
Timer

Set/Kill Flag

0:Set 1:Kill
TimerID

Repeat Flag

0:Once 1: Repeat

Interval

a*10n*100

(msec)

SendMessage
3 8

MessageID

HardwareControl
3 8

HW_ID 001: General LED

010: Power Saving

011: Serial Port

SendCommand
3 431

Command

Length

Data Length

CommandID 011: ADD_ECA

101: DELETE_ECA

110: REQUEST_ECA

・・Data・・

Similar to Timer actionSimilar to Timer action

RRRRRRRRRRRRRRRR

xRRRRRR xRRRRRR

General LED

Power Saving

Serial Port

Port Selection

0: COM1

1: COM2

Multi Condition Flag

R: Not Use

Fig. 2. Binary coding formula

3 Prototype of the Ubiquitous Chip

Based on the design described in the previous sections, we developed a prototype
device of the ubiquitous chip. In the following sections, we explain the prototype
device, focusing on the hardware architecture, the software architecture, and the
attachments.

3.1 Hardware Architecture

The prototype device consists of two parts: the core-part (Figure 3, left) and
the cloth-part (Figure 3, right). The core-part (34 mm in diameter) contains a
microprocessor (PIC16F873), a power on/off switch, and a general LED that in-
dicates the state of the ubiquitous chip. As shown in Figure 4, the core-part has
six input ports (IN1-6), 12 output ports (OUT1a-6a, 1b-6b), six power-supply
ports (VCC), and two serial ports (COM1-2). The cloth-part (59 mm in diame-
ter) operates as a converter between the core-part and external sensors/devices.

Fig. 3. A prototype device

Φ34.0 mm

GND

VCC

IN2

OUT2a

OUT2b

OUT4b

OUT4a

IN4

VCC

GND

GND

VCC

IN1

OUT1a

OUT1b

GND

VCC

Φ34.0 mm

GND

VCC

IN2

OUT2a

OUT2b

OUT4b

OUT4a

IN4

VCC

GND

GND

VCC

IN1

OUT1a

OUT1b

GND

VCC

IN3

OUT3a

OUT3b

COM1(RX)

COM1(TX)

OUT5b

OUT5a

IN5

VCC

GND

COM2(TX)

COM2(RX)

OUT6b

OUT6a

IN6

VCC

GND

Fig. 4. I/O ports of a prototype device

Sensor

Input Port

Buzzer

Output

Serial Port

LED

Sensor

Input Port

Buzzer

Output

Serial Port

LED

Sensor

Input Port

Buzzer

Output

Serial Port

LED

Fig. 5. An example showing connections

The cloth-part houses a Li-ion battery, connectors for attaching sensors/devices,
and input/output ports as well as the core-part. Figure 5 shows a connection ex-
ample between the prototype devices, sensors, and other devices. Table 4 shows
the hardware specifications of the ubiquitous chip.

3.2 Software Architecture

Our prototype device uses the PIC16F873, which is a programmable RISC (Re-
duced Instruction Set Computer) type processor. Although this processor is
cheap and easily programmed, its memory size is small and processing power
is low. Hence, it is necessary to implement a rule-based system to improve ef-
ficiency. For example, our prototype stores ECA rules into the rule-base and
processes the rules every two bytes. The microprocessor reads a condition part

Table 4. Hardware specifications

CPU PIC16F873
Operating voltage 2.9 – 6.0V(3.3V)

Weight 11g (51g includes cloth)
Power resource 300mAh(4.2V)

Program memory 4000 words
RAM 192 bytes

EEP-ROM 128 bytes

Microprocessor

① Read and analyze
condition part.

Event Condition Action

Condition part Action part

ECA rules included in the rule base

Rule 1

② Read and Execute action part.

②’ Read and analyze condition part of the next ECA rule.

Rule 2

Rule 3

Repeat this process sequentially.

・

・

・

・

・

・

Complete condition
part evaluation.

Incomplete condition
part evaluation.

Fig. 6. A process for ECA Rules of the prototype

of the first rule from the rule base, and if the condition is satisfied, the micro-
processor reads the action part; otherwise, it reads the next rule.

This processing formula is illustrated in Figure 6. Therefore, by reading just
the necessary data from the rule base, the memory size required for rule pro-
cessing is only two bytes.

Figure 7 shows a block diagram of the rule processing in the prototype. The
rule-processing part reads and executes rules, and the communication-processing
part checks the serial ports. When the system receives data from a serial port,
it generates a RECEIVE event. Since the required memory size to process rules
is small, even the PIC16F873 can drive the system easily.

3.3 Attachments

As shown in Figure 8, we have developed attachments for the ubiquitous chip.
These attachments include various types of connectors for connecting one ubiq-
uitous chip to another, sensors such as an infrared sensor, a pyroelectric sensor,
an ultrasonic sensor, ans ultraviolet sensor, as humidity sensor, a light sensor, an
acceleration sensor, a pressure sensor, a thermal sensor, a geomagnetic sensor,
and an audio sensor. Moreover, we have developed input devices such as various
types of buttons, switches, rheostats, and actuators such as a vibrator, buzzers,
and motors.

Rule processing

Rule 1
Action
part

Condition
partRule 1

Action
part

Condition
part

Interrupt processing

Communication processing

Rule-base

Rule n
Action

part
Condition

partRule n
Action

part
Condition

part

・

・

・

・

・

・

Complete

Incomplete

Yes

No

Read
condition part

Communication
check

Condition
evaluation

Action
execution

Read
action part

Read
condition part

Start-bit
detection

Yes

No

Timer expiration

Start

Finish

Yes

Yes

No

No

Count up

Timer setting
check

Timer expiration
check

Fig. 7. A block diagram of the prototype

In addition to these attachments, we have developed devices that enhance
the cloth-part of the ubiquitous chip, as shown in Figure 9. One is a battery
box for AAA rechargeable batteries that have long battery-life and are easy to
obtain. The other is a wireless unit that makes the serial port wireless. This
device employs the unprocedure communication via RF. Using this device, a
ubiquitous chip can communicate other chips in wireless.

4 Development Environment

Since an ECA rule is represented in the binary format, as shown in Figure 2,
it is difficult to describe ECA rules directly[8]. Therefore, we implement two
development tools: the rule editor and the rule writer. Using these tools on
a PC, we can easily describe ECA rules and store them in ubiquitous chips.
Moreover, we implement a ubiquitous chip emulator that achieves cooperation
between PCs and ubiquitous chips.

4.1 ECA Rule Editor and ECA Rule Writer

Figure 10 shows a screen shot of the ECA rule editor. In this application, we
can make ECA rules by specifying events, conditions, and actions graphically
with easy mouse operations. When we specify a rule, bit sequences of this rule

Volume

Light Sensor

Connective Cable

Connector
Pyroelectric
Sensor

Buzzer

LED

Switch

Fig. 8. The developed attachments

Fig. 9. The battery box (left) and the wireless unit (right)

are displayed on the binary display part and contents of this rule are displayed
in natural language on the rule monitor part.

Figure 11 shows a screen shot of the ECA rule writer. This application reads,
analyzes, and displays rules from a binary file, or a ubiquitous chip that is
connected via a serial port. This application also writes displayed rules into
ubiquitous chips via a serial port. We can add, delete, and modify ECA rules on
ubiquitous chips freely using this application.

Event

Condition

Action

Rule monitor Binary

Event

Condition

Action

Rule monitor Binary

Fig. 10. A screen shot of the Rule Editor

Fig. 11. A screen shot of the Rule Writer Fig. 12. A screen shot of the Emulator

4.2 Ubiquitous Chip Emulator

We also implement the ubiquitous chip emulator as shown in Figure 12. This
emulator is used for simulations of rules/applications. It is also used to achieve
cooperation between PCs and ubiquitous chips.

It is possible to use the same rules employed for ubiquitous chips to oper-
ate the emulator. The on/off states of the input/output ports on an emulated
ubiquitous chip are represented by lighting tones, and we can control the input
states by a click operation on each port. Figure 13 shows an example of a connec-
tion between a PC and a ubiquitous chip. In this way, a user can collect/utilize
information from sensors connected to ubiquitous chips.

Moreover, since the emulator does not have any restriction on memory size,
the emulator can not only simulate a ubiquitous chip, but also store ECA rules
for another ubiquitous chip and deliver them to connected ubiquitous chips.

Fig. 13. Example of a connection between a PC and a ubiquitous chip

5 Applications

In this section, we show two examples of applications using ubiquitous chips.
The first application is the room automation system illustrated in Figure 14.
This application covers the following scenario:

– The user downloads the rule for the room control to his ubiquitous chip by
reserving the room on his PC.

– When the user goes to the room and inserts his ubiquitous chip to the slot
on the door, the door is automatically unlocked.

– When the door opens, the ubiquitous chip works to customize the room,
such as by turning on the room light and the air-conditioner in cooperation
with other ubiquitous chips embedded in the room.

– After once shutting the door, the system sounds a buzzer if the door is left
open for more than one minute.

– The ubiquitous chip controls the air-conditioner with its temperature sensor.
– When the telephone rings, if there is a person in the room, it plays the

message automatically. Otherwise, it records or transfers the message.

Table 5 shows the principals of ECA rules for these services. RULE 1-5
are the downloaded rules for ubiquitous chip A. RULE 6-8 and RULE 9-11 are
stored rules in ubiquitous chip B and ubiquitous chip C. RULE 1 detects the
door opening and sets a one-minute timer. RULE 2 sounds the buzzer when the
timer fires. If the door is closed within one minute, RULE 3 resets the timer.
RULE 4 requests the door to unlock and RULE 5 notifies ubiquitous chip B of
the entry. RULE 4 is activated when this message arrives. This rule resends the
entry message to ubiquitous chip C and turns on the room light. RULE 7 and 8
control the air conditioner using the information from the temperature sensor.

A

USER

ROOM LIGHT

DOOR

On

On

AIR-CONDITIONER

Enter

Open

Rule-based

I/O control device

A

B

EVENT

CONDITIONACTION

ACTION

ACTION

CONDITION

CONDITION

ACTION EVENT

EVENT

PHONE

On

C

ACTION

Message

EVENT

Door

Sensor

Wireless

Module

Ubiquitous Chip

Wireless

Module

Intelligent

Phone

Fig. 14. An example of Application (1)

Table 5. The rule set for Example (1)

RULE 1 RULE 2 RULE 3

E: E: TIMER E:
C: I1=0, S1=0 C: C: I1=1, S1=1
A: S1=1, TIMER(1min) A: O1=1 A: S1=0, TIMER(0), O1=0

RULE 4 RULE 5 RULE 6

E: E: RECEIVE(M2) E: RECEIVE(M3)
C: I2=1 C: C:
A: SEND(M1) A: SEND(M3) A: O2=1, SEND(M4), S2=1

RULE 7 RULE 8 RULE 9

E: E: E: RECEIVE(M4)
C: I3=1, S2=1 C: I3=0 C:
A: O3=1 A: O3=0 A: S3=1

RULE 10 RULE 11

E: E:
C: I4=1, S3=1 C: I4=1, S3=0
A: O4=1 A: O4=0

I1: door sensor O1: buzzer S1: door flag M1: unlock request
I2: key sensor O2: room light S2: enter flag (for chip B) M2: unlock complete
I3: heat gauge O3: air conditioner S3: enter flag (for chip C) M3: enter (to chip B)
I4: phone call O4: phone M4: enter (to chip C)

RULE 10 and 11 change the behavior of the telephone according to the state of
the user’s presence.

This type of application produces a “smart” space. We consider that most
of the requirements in the smart space are simple, and easy realizable using our
device. Of course, the flexibility of our device enables the smart space to change
its functionality in response to different situations by using the dynamic change
of rules.

The second example, illustrated in Figure 15, is the application for wearable
computing environments. This application covers the following scenario:

USER Rule-based
I/O control device

EVENT

CONDITION

ACTION

B

WA L L

Wearable
Computer

A

C

CONDITION

EVENT EVENT

EVENT

ACTION

D

Display information

On

HM D
Ubiquitous Chip

Vibrator

IR Module

Fig. 15. An example of Application (2)

Table 6. The rule set for Example (2)

RULE 1 RULE 2 RULE 3

E: RECEIVE(M1) E: RECEIVE(M3) E:
C: C: C: I1=1
A: SEND(M2) A: O1=1 A: SENDECA

RULE 4 RULE 5 RULE 6

E: TIMER E: E: RECEIVE(M2)
C: C: I2=1, I3=1 C: I4=1
A: SEND(M1) A: O2=1 A: SEND(M3), SEND(M4)

I1: button O1: vibrator M1: hello packet
I2: right foot O2: notify of stay M2: detection
I3: left foot M3: vibration request
I4: connected with O2 M4: detection to wearable PC

– The user can acquire local information disseminated from a wall when he
points his fingers at the wall. However, this acquirement is performed only
when he stops walking.

– The user can change the wall light’s blinking pattern by pushing a button
on his wrist when he points his fingers at the wall light.

Table 6 shows the ECA rules for this application. RULE 1-3 are stored in
ubiquitous chip A, while RULE 4, 5, and 6 are stored in ubiquitous chip B, C, and
D. RULE 4 disseminates the beacon at a regular interval, and RULE 5 sends the
status of the user’s feet to ubiquitous chip D. RULE 1 detects the beacon from
the wall (ubiquitous chip B) and notifies ubiquitous chip D. If ubiquitous chip D
receives the notification and he stops walking, RULE 6 sends the detection of the
disseminated beacon to the wearable computer and ubiquitous chip A. RULE 2
then turns on the vibrator. RULE 3 sends the specific ECA rules to ubiquitous

: UC (Rule-based I/O control device)

UC

UC

UC

UC

UC

sensor

actuator

EVENT

CONDITION

ACTION

ACTION

CONDITION

UC

EVENT

ACTION

sensor

ACTION

EVENT

EVENT CONDITION

ACTION

ACTION

CONDITION

EVENT

EVENT

USER

USER

ACTION

EVENT

ACTION

CONDITION

EVENT(Timer)

CONDITION

ACTION

UC

Fig. 16. A ubiquitous computing environment with rule-based I/O control devices

chip B via the infrared module when the user pushes the button on his wrist.
In this way, using our devices, we can construct a ubiquitous computing en-

vironment that integrates embedded computers, wearable computers, artefacts,
and users. Such a system is illustrated in Figure 16.

6 Conclusion

In this paper, we have described the design and implementation of the ubiq-
uitous chip, which is a rule-based I/O control device for ubiquitous computing.
The two characteristics of our device, (1) the separation between I/O control and
attachments and (2) the rule-based approach, work effectively to construct ap-
plications in ubiquitous computing environments. Moreover, we have presented
examples of services that use our devices. These applications show the possibility
of integration of ubiquitous computing environments and wearable computing
environments by using ubiquitous chips.

In the future, we plan to construct ad-hoc networking functions with ubiq-
uitous chips, and various other functions such as analog data processing. More-
over, in its current state of implementation of development environment, it is
still rather difficult for users to develop/customize the system behaviors and to
develop larger systems composed of hundreds of ubiquitous chips. Therefore, we
plan to provide new development tools for end-user programming and larger
systems.

References

1. G. D. Abowd, C. G. Atkeson, A. F. Bobick, I. A. Essa, B. Macintyre, E. D. Mynatt
and T. E. Starner: The Future Computing Environments Group at the Georgia
Institute of Technology, In Proc. of the 2000 Conference on Human Factors in
Computing System.

2. M. Beigl, H. Gellersen: Smart-Its: An Embedded Platform for Smart Objects,
Smart Objects Conference (sOc) 2003.

3. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister: System architec-
ture directions for networked sensors, In Proc. of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems, pp.
93–104, 2000.

4. L. Holmquist, F. Mattern, B. Schiele, et al: Smart-Its Friends: A Technique for
Users to Easily Establish Connections between Smart Artefacts, In Proc. of 3rd
International Conference on Ubiquitous Computing (UbiComp 2001), pp. 116–122,
2001.

5. J. Kahn, R. Katz and K. Pister: Mobile Networking for Smart Dust, In Proc.
of ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom99), pp.271–278, 1999.

6. Y. Kawahara, M. Minami, H. Morikawa, T. Aoyama: Design and Implementation
of a Sensor Network Node for Ubiquitous Computing Environment, In Proc. of
VTC2003-Fall 2003.

7. MICA, http://www.xbow.com/products/Wireless Sensor Networks.htm
8. M. Resnick and S. Ocko: LEGO/Logo: Learning Through and About Design,

http://llk.media.mit.edu/papers/1991/11.html.s.
9. P. Saffo: Sensors: The Next Wave of Infotech Innovation, Ten-Year Forecast, Insti-

tute for the Future (IFTF), pp. 115–122, 1997.
10. K. Sakamura: TRON: Total Architecture, In Proc. of Architecture Workshop in

Japan’84, pp. 41–50, 1984.
11. R. Want, A. Hopper, V. Falcao and J. Gibbons: The Active Badge Location System,

ACM Transactions on Information Systems 10(1), pp. 91–102, 1992.
12. M. Weiser: The Computer for the Twenty-first Century, Scientific American, Vol.

265, No. 3, pp. 94–104, 1991.
13. P. Wellner, E. Machay, R. Gold, M. Weiser, et al: Computer-Augmented Environ-

ments: Back To The Real World, Communications of the ACM, Vol. 36, No. 7, pp.
24–97, 1993.

14. J. Widom and S. Ceri: ACTIVE DATABASE SYSTEMS, Morgan Kaufmann Pub-
lishers Inc, 1996.

This article was processed using the LaTEX macro package with LLNCS style

