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Abstract

Although various systems use multiple accelerometers to
recognize minute motions and states in the research area of
context-awareness, a conventional architecture can be op-
timized from the viewpoint of its energy consumption and
accuracy. In this paper, we propose a context-aware system
that reduces the energy consumption by controlling the sam-
pling frequency of wearable sensors. Even if the sampling
frequency changes, no extra configuration is required be-
cause the missing data for the controlled sensors are com-
plemented by our proposed algorithm. The evaluation re-
sults confirmed a power-reduction of 34.28% with keeping
the accuracy. The energy consumption can be reduced with-
out a large loss in accuracy using our system.

1. Introduction

Many context-aware systems with various kinds of sen-
sors have recently been introduced in the research area of
context-awareness. Context-aware systems are applied to
various services i.e., health care. Though in these services,
accelerometer plays an important roll, the architectures are
not optimal in terms of power consumption. The number
of sensors in conventional systems are predetermined and
fixed. If the power supply and sampling frequency can be
flexibly controlled, the power consumption can be reduced.
Since the battery size is limited for wearability, reducing of
power consumption is an important issue.

In this paper, we propose a method to conserve power
in a context-aware system by decreasing the sampling fre-
quency of the accelerometers. Our proposal complements
the missing data caused by the sampling frequency con-
trol to maintain the accuracy. The sampling frequency of
the data given to a context-aware system is kept constant.
Therefore, neither extra training data nor a specific setting
of the context-aware system are required. The energy con-
sumption can be reduced without any large losses in recog-
nition accuracy by using our proposal.

2. Related Work

Sensors of context-aware systems are used in the envi-
ronment where battery size is limited. In addition, sen-
sors with wireless transmission capubilities, such as Blue-
tooth, have recently been appearing. The Power necessary
for transmitting data is large and power saving is required
compared with wired sensors. Kang et al. proposed a sys-
tem with only a minimum subset of multiple heterogeneous
sensors that transmit to detect true/false threshold-based
queries [1]. However, only threshold-based queries are sup-
ported, and whether each accelerometer is controlled and
the recognition performance are unclear. Meanwhile, Mu-
rao et al. were able to reduce the energy consumption with
keeping the accuracy by turning sensors off and by com-
plementing data for the shut-off sensors according to the
tolerance of the accuracy indicated by the users or appli-
cations [3]. In addition, Van Laerhoven et al. presented a
low-power node with nine tilt switches and an accelerome-
ter. While the tilt switches do not change, the accelerometer
is turned off [4]. However, these systems turn sensors only
ON/OFF and do not finely control the power, such as by
controlling the sensors’ sampling frequency. Generally, al-
though detailed movement can be detected and the recogni-
tion accuracy rises with a high sampling frequency, much of
the power is consumed for sampling and transmitting data
to a computer. Andreas et al. proposed a system that re-
duces the energy consumption by controlling the sampling
frequency of one accelerometer [2]. However, this system
is not general because it implements a unique stand-by state
that stops the processor between samplings. Moreover, sim-
ply reducing sampling frequency requires additional recog-
nition models which has learned data captured with the sam-
pling frequency after control since feature values change ac-
cording to the sampling frequency. However, this is unreal-
istic to make models of all possible frequencies.

In this paper, we propose a context-aware system that
flexibly controls trade-off between energy consumption and
recognition accuracy by sampling control and data comple-
ment.



3. Proposed Method

3.1 Sampling frequency control

We propose the following two methods for reducing the
production of data samples.
The Constant Reduction Method (CRM) controls the fre-
quency by sampling the data once every n times, as shown
in Figure 1. The sampling frequency when n = 1 is called
the base frequency. For example, when the base frequency
is set to 100 Hz, the sampling frequency becomes 50 Hz
when n = 2. However, n should be a divisor of the base
frequency.
The Burst Reduction Method (BRM) intermittently sam-
ples data, as shown in Figure 2. Let us assume time is
t = T , then variance σT over N sample data sequence
WT = (xT−N+1，· · ·，xT ) is calculated. If |σT − σT−N |
runs over the threshold Th, the subsequent N samples
WT+N are captured. Otherwise, WT+N are not captured
and WT+2N are captured. This method would effectively
reduce the number of data samples, because human contin-
ues same context for certain period.

3.2 Data complement

The recognition algorithm learned the data in advance
without missing any data. If the sampling frequency of the
data for testing differs from that for training, the contexts
are not well recognized since the feature values differ as the
sampling frequency changes. Making recognition models
for all the sampling frequencies is not realistic since there
are a lot of combinations. Therefore, by complementing the
missing data, the sampling frequency of the data fed to the
recognition algorithm is kept constant. Six methods of data
complement are described in the following paragraphs.
The Up Sampling Method (USM) resamples data with
higher sampling rates. Any missing data in the obtained
data sequence are replaced with 0 and FFT takes place for
the sequence. Then, the LPF to cut the frequency over a
half of the sampling frequency (Niquist frequency) is ap-
plied, and then the FFT is conducted. If we use this method
with BRM, the recognition accuracy obviously goes down
since the amount of data is continuously lacking. Therefore,
this method is used with CRM.
The Same Value Complementation Method (SVCM)
complements the missing data using the preceding sampled
value. This method is used with CRM for the same reason
as for USM.
The Liner Complementation Method (LCM) comple-
ments the missing data using the data on the line connecting
the preceding sensing data and the adjacent complemented
data. This method is used with CRM for the same reason as
for SVCM.
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Figure 1. CRM
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Figure 2. BRM
The Window Copy Method (WCM) complements the
missing window data by using BRM with the window data
of the preceding sampling, as shown in Figure 3. This
method is used with only BRM because continuous data are
needed.
The Pair Database Method (PDM) complements the
missing data according to the values of the other sensors
that have captured data when multiple accelerometers are
used. Figure 4 illustrates the flow of PDM. For the sake
of simplicity, three 1-axis sensors are used in this example.
The system has collected complete sensed data (pair-data)
for all the contexts and constructed a database of pair-data
(pair-database) in advance. When the input data (15, 90, -)
contains missing data, the missing data is removed. We call
the remaining part (15,90) a recognition vector. Then, the
system finds the pair-data in the pair-database that is nearest
to the recognition vector by using the k-NN method, and the
pair-data (20,100,100) is the nearest one. Finally, the data
for the missing data are replaced by that from the extracted
pair-data (100). A complemented vector (15,90,100) is gen-
erated and will be the input for the context-aware algorithm.
The Enhanced Pair Database Method (EPDM) is similar
to PDM, but each pair-data has two continuous data. The
procedure for EPDM is shown in Figure 5. Let us assume
time t = T now, and the input data of t = T (-, 30, 70)
and T − 1 (-, 10, 90) are used to create the recognition vec-
tor, and then the nearest pair-data is extracted from the pair-
database as well as by using PDM. As a result, the missing
data of t = T is complemented using the data in the ex-
tracted pair-data corresponding to the missing data (30) and
the complemented vector (30, 30, 70) is generated. The
missing data of t = T − 1 is not complemented at that time
since the data is already complemented at time t = T −1. If
all the sensors did not capture data at the same time, PDM
and EPDM cannot be used. In that case, an exceptional pro-
cess is carried out, which calculates the correct features by
taking into consideration the number of captured data in the
window. Both methods of sampling control are used since
PDM and EPDM do not depend on how the data are missed.

4. Evaluation

This experiment provided data from nine activities cap-
tured from one test subject who wore three-axis wireless
accelerometers [5] on his right ankle, right wrist, and waist.
Obtained nine contexts are Walking, Running, Ascending
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Figure 3. WCM
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Figure 4. PDM
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Figure 5. EPDM

Table 1. Trade-off between sampling and en-
ergy

Sampling frequency Operation time Energy consumption
200 Hz 210 min 243 mW
100 Hz 428 min 119 mW
50 Hz 490 min 104 mW
10 Hz 551 min 92 mW
1 Hz 570 min 89 mW

stairs, Descending stairs, Lying, Kneeling, Sitting, Stand-
ing, and Biking. There were 10000 samples of captured data
at 150 Hz for each context, and 100 samples of which were
used for training and the remaining one are used for testing.
The correct contexts are manually labeled. USM, SVCM,
LCM, PDM, and EPDM are applied to the data whose sam-
pling frequency is reduced to 75 Hz, 15 Hz, and 1.5 Hz
by CRM. In addition, WCM, PDM, and EPDM are applied
to the data whose sampling frequency is reduced by BRM.
The base frequency is set to 150 Hz. The System uses the
average and variance as its features. We adopted SVM as a
recognition algorithm from viewpoint of performance.

4.1 Sampling v.s. energy

Before going on the experiments, we measured the oper-
ation time of the sensors for different sampling frequencies
to clarify the trade-off between the sampling frequency and
energy consumption. From the results listed in Table 1, the
energy consumption goes down as the sampling frequency
decreases. Thus, it is clear that we can conserve energy by
changing the sampling frequency. The same kind of ten-
dency has been reported in [2]. Although the number of
trials of data complement increases as the number of miss-
ing data increases, since even PDM consumes much less
power than for sensing and transmitting [3], the sampling
frequency control can conserve energy.

4.2 Performance of data complement

In this section, the sampling frequency of one sensor is
reduced by CRM and the remaining two sensors are not
controlled in order to observe the performance of the data

Table 2. Recognition accuracy for each com-
plement method

Complement method Recognition accuracy (%)
ankle wrist waist 150 Hz 75 Hz 15 Hz 1.5 Hz

- - - 97.40 - - -
W/O C - - - 93.82 90.92 81.42
SVCM - - - 96.12 93.07 83.11
LCM - - - 96.13 93.51 83.86
USM - - - 96.12 93.07 83.01

PDM(C) - - - 94.78 91.92 90.84
EPDM(C) - - - 95.85 92.19 90.81

- W/O C - - 94.41 92.34 86.65
- SVCM - - 96.40 96.30 89.98
- LCM - - 96.41 96.42 90.27
- USM - - 96.40 96.30 89.98
- PDM(C) - - 95.94 94.09 93.58
- EPDM(C) - - 96.43 93.89 92.87
- - W/O C - 93.36 91.82 75.09
- - SVCM - 96.37 94.93 80.41
- - LCM - 96.34 94.67 80.85
- - USM - 96.37 94.93 80.45
- - PDM(C) - 95.67 94.50 94.27
- - EPDM(C) - 96.17 94.21 93.70

complement methods. The averages of the recognition ac-
curacy over ten trials are listed in Table 2. The top line
shows the result without sampling control. “W/O C” means
“Without Complement” and “(C)” means “using CRM”.
The recognition accuracies are kept high regardless of the
frequency compared to the results without data comple-
ment. A t-test (significance level 5%) is applied to these
results. As a result, there is not significant difference be-
tween the complement methods at 75 Hz. However, we did
confirm that there is a significant difference between PDM
or EPDM and the other methods at 1.5 Hz. This is because
the intervals of sampling elongate and the complemented
values differ from the actual values, while PDM and EPDM
complement well since the current values of the other sen-
sors are used.

4.3 Combination of sampling control and
data complement

Table 3 lists the recognition accuracy when the fre-
quency control methods and the data complement methods
are individually applied to each sensor. Each row shows the
combination of the methods satisfying the required accu-
racy. The numbers in the parenthesis in the reduction rate
column represent the power-reduction rates when W/O C is



Table 3. Recognition accuracy and power-
reduction rates
Required Method Power-reduction rate (%) Recognition

accuracy (%) ankle wrist waist average ankle wrist waist accuracy (%)

97 LCM75 SVCM15 WCM100-105 34.28 29.73 43.37 29.73
97.04

(81.51)

96–94 LCM75 SVCM15 SVCM15 38.82 29.73 43.37 43.37
96.12

(83.24)

93–90 EPDM(C)15 PDM(C)15 SVCM15 43.37 43.37 43.37 43.37
93.00

(79.83)

89–85 EPDM(C)15 PDM(C)15 EPDM(C)1.5 43.84 43.37 43.37 44.78
89.43

(74.56)

applied at the same sampling rate. In the table, the sampling
frequency of CRM and the threshold of the window N and
variance Th of BRM are written after the name of the com-
plement methods. The power-reduction rates in Table 3 are
calculated from the results listed in Table 1. It is confirmed
that at least 34.28% of the power-reduction rate on average
is achieved when the required recognition accuracy is more
than 85%. CRM achieves this high power-reduction rate by
setting the sampling frequency while the power-reduction
rate of BRM achieves 29.73% at most. Therefore, CRM
occupies the results at a high degree of accuracy. It is con-
firmed from the results of t-test in Section 4.2 that all the
complement methods are allowed high sampling rates since
a significant difference is not seen among them. Meanwhile,
intelligent algorithms such as PDM and EPDM are needed
at low sampling rates because there is a significant differ-
ence between them and the others.

The data used in the evaluation were obtained in labora-
tory environment, which means the variance does not fluctu-
ate. We also evaluated all of this on a 24-hour data set to test
whether a long-term deployment has a significant difference
on the reported results, and found only minor differences.

4.4 Uniformization of power-reduction

Seeing the results when the required accuracy is 94-96%,
the power-reduction rate of the ankle sensor is only 29.73%
while the others are 43.37%, which means the ankle sensor
stops first, and the cases for 85-89% are as well. For prac-
tical use, uniformizing the energy of all the sensors extends
the lifetime of the system. Therefore, by combining the two
methods for each region, the lowest power-reduction rate
for the sensors that has been bottle-neck is improved. In or-
der to find the optimal combination, all the combinations of
the two methods are simulated by changing the proportion
of each method. Compared with the results in Table 3, when
the recognition accuracy is in the ranges of 94-96% and 85-
88%, the power-reduction rate is improved by 4-10.8% and
0.28-1.22%, respectively.

4.5 Comparison with power control

This section compares our sampling frequency control
with the sensor power control proposed in [3]. When only
one sensor is used, the recognition accuracy is 87.00% and

the power-reduction rate is 36.33%. On the other hand,
when two sensors are used, the recognition accuracy is
92.54% and the power-reduction rate is 27.10%. From the
results in Table 2 and that of the two sensors, power con-
trol is superior to the sampling control from the viewpoint
of the power reduction. Although its recognition accuracy
severely decreases, the flexible control can be conducted by
using the proposed method. In addition, when comparing
the power-reduction rate of one or two active sensors on av-
erage with that listed in Table 3, the controlling sampling
frequency is superior. From this viewpoint, the controlling
sampling frequency methods refrain from the drop in accu-
racy and have a higher degree of power-saving.

5 Conclusion

We have proposed a method of energy saving for
context-aware systems using a sampling control and the
data complement in this paper. Although the recognition
accuracy was 97.40% without any control, 34.28% of the
power was reduced with keeping a 97% accuracy. In addi-
tion, we proposed a method to make the power consump-
tion uniform by combining two methods to cover the low
power-reduction rate of each one. As future work, we plan
to propose a method to extend a window size of BRM as
data is continuously cut.
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