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Abstract. In wearable computing environments, a wearable computer runs vari-
ous applications using various sensors (wearable sensors). In the area of context
awareness, though various systems using accelerometers have been proposed to
recognize very minute motions and states, energy consumption was not taken into
consideration. We propose a context-aware system that reduces energy consump-
tion. In life, the granularity of required contexts differs according to the situation.
Therefore, the proposed system changes the granularity of cognitive contexts of
a user’s situation and supplies power on the basis of the optimal sensor combina-
tion. Higher accuracy is achieved with fewer sensors. In addition, in proportion
to the remainder of power resources, the proposed system reduces the number of
sensors within the tolerance of accuracy. Moreover, the accuracy is improved by
considering context transition. Even if the number of sensors changes, no extra
classifiers or training data are required because the data for shutting off sensors
is complemented by our proposed algorithm. By using our system, power con-
sumption can be reduced without large losses in accuracy.

Keywords: Wearable computing, wearable sensors, context awareness, power
consumption.

1 Introduction

The downsizing of computers has led to wearable computing attracting a great deal
of attention. Wearable computing is different from conventional computing in three
ways[1]: (1) Hands-free operation: information can be obtained without manual op-
eration because the computer is worn. (2) Power always on: the computer is always
available because the power is always on. (3) Daily-life support: daily activities can be
supported because the computer is worn all the time. Along with the progress in wear-
able computing, recently, many context-aware systems with various kinds of sensors
have been introduced, such as systems with an electromyograph [2], electrocardiogram
[3], GSR (Galvanic Skin Reflex) [4], and hand-made devices [5]. In particular, one of
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the purposes in the Porcupine project[5] is reduction in power consumption. A switch-
ball device takes the place of an accelerometer. One switch ball outputs binary data de-
pending on whether it is tilted or not, and nine switch balls go in all directions. Power
consumption is very low because of its simplicity, but the accuracy is significantly infe-
rior to that of an accelerometer. This is because an accelerometer has better resolution
than that of other devices.

Context-aware systems are applied to many services: health care[4], recognition
of workers’ routine activity[6], and support of assembly and maintenance tasks[7]. A
health-care system[4] recognizes situations of life habits in real time using a heat sen-
sor, GSR sensor, accelerometer, electric sphygmograph, GPS, geomagnetic sensor, and
gyroscope. The system recognizes contexts and advises the user about how to make
improvements in one’s life.

A nurse’s routine activity recognition system[6] supports his/her routine work. They
have to memorize what they did in a day to communicate with each other and not
make a mistake such as giving a dose of medicine needlessly. However, the system
seems messy and mistakes might occur. This system recognizes nurses’ activities with
an accelerometer and their locations with RF-ID receivers.

In the above examples, the accelerometer plays an important role. We consider that
the accelerometer is best among current sensors for recognizing behavioral contexts, but
the architectures for using accelerometers are not optimal, especially in terms of power
consumption. Though the number of sensors in conventional systems are predetermined
and fixed, if some sensors can be turned off flexibly, that leads to a reduction in power
consumption without much deterioration in accuracy.

In this paper, we propose a context-aware system that changes the combination of
accelerometers considering energy consumption. Previously, we have developed the
CLAD (cross-linkage for assembled devices) device, which is a relay device between
wearable sensors and a wearable computer. CLAD manages the power supply to the
sensors[8]. By utilizing CLAD, the proposed system can manage sensors to achieve a
high accuracy of activity recognition with a low energy consumption.

This paper is organized as follows. Section 2 describes advanced research contribut-
ing to this system. Section 3 presents the system structure. The performance of our
system is discussed in Section 4. Finally, Section 5 concludes our research.

2 CLAD

We have proposed CLAD[8] which is a relay device positioned between a wearable com-
puter and wearable sensors. CLAD manages the connected sensors to achieve (1) flexible
power supply control for energy saving, and (2) flexible error control for achieving suf-
ficient sensed-data accuracy. The CLAD prototype is shown in Figure 1. The size of
CLAD is W76 × H13 × D70 mm, and the size of the sensor is W45 × H12 × D12 mm.

CLAD has its own power source and manages connected sensors. The voltage and
current to detect power shortages and overcurrents are monitored . Each sensor has a
microcomputer (CPU) to process commands from CLAD. Information about the sensor
(type, accuracy, output range, start-up time, operating voltage, and operating current) is
stored in the CPU. CLAD has the following characteristics.
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Fig. 1. CLAD prototype

– Alternative device retrieval and changeover
CLAD detects sensor anomalies from consecutive outlying data points and sen-
sor data interruptions, for example. In such cases, CLAD identifies an alternative
device by referring to the sensor profile information, and CLAD activates it.

– Power-supply control
CLAD always monitors its internal power source. If CLAD detects a power short-
age, power consumption is reduced by stopping the power supply to some of the
sensors on the basis of a user-defined policy.

– Overcurrent detection
If an overcurrent is detected, CLAD stops all power supplies for safety.

– Error detection
CLAD detects problems such as outlying data and dying sensor batteries. CLAD
notifies the PC of such problems, so applications can deal with them individually
such as by displaying a message recommending a battery change.

– Pseudo data generation
When a sensor is turned off and there is no alternative device, CLAD generates
pseudo data from learned data and the correlation to other sensors. This function
improves operational reliability.

The most distinctive function of CLAD is the pseudo data generation. Generally, there
are three answers in response to missing data.

– Listwise deletion
No sensed data is used when at least one piece of missing data is included. In our
assumption, a data complementation is used in case a sensor has broken down. This
method cannot be used because missing data comes consecutively in that situation.
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Fig. 2. Pseudo data generation

– Pairwise deletion
Sensed data is used after removing only missing data. However, a change in sensed
data dimension is caused, which requires several restrictions on context recog-
nition algorithms. Therefore, this is not an appropriate answer as a generalized
mechanism.

– Imputation
Sensed data is used after complementing missing data with other values. Doing
that does not change the dimension of sensed data, so the user of CLAD need not
consider the data complementation.

Considering these characteristics, CLAD uses the imputation for data complementa-
tion. An example of pseudo data generation for a context-aware system with five ac-
celerometers is shown in Figure 2. This example supposes that sensor 5 is shut off by a
breakdown. The pseudo data is generated as follows.

Step 0. Construct pair database
CLAD has already collected sensed data (pair vectors) for all contexts and constructed
a database of pair vectors (pair database).

Step 1. Acquire cognitive vector
When the input contains missing data for some reason such as sensor breakdown, the
missing data is removed, and we call the remaining data a cognitive vector.

Step 2. Extract pair vector from pair database
The system finds the pair vector in the database that is nearest the cognitive vector by
using the k-NN (k-nearest neighbor) method.
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Step 3. Extract pseudo data from pair vector
The data for sensor 5 (missing data) is replaced with that of the extracted pair vector.
Then, a complemented vector is generated and will be used as input of a context-aware
system.

In pseudo data generation, the distance is calculated among working sensors between
cognitive vector X = (x1x, x1y, x1z , · · ·, xj , · · ·, x5x, x5y , x5z) and pair vector P i =
(pi1x , pi1y , pi1z , · · ·, pij , · · ·, pi5x , pi5y , pi5z ) (i = 1, · · ·, N). The subscripts: 1x or
5y indicate x-axis of sensor 1 or y-axis of sensor 5, and each component such as x1x

is a scalar value. N is the number of samples in the pair database. If our mechanism
uses Euclidean distance for calculating the distance between a cognitive vector and
pair vector, classifying the contexts when the data of working sensors for two contexts
are nearly equal and only missing data differs is difficult. Therefore, we focus on the
correlation among worn sensor values, and the k-NN method achieves more accurate
data complementation by using the correlation. We use the Pearson product-moment
correlation coefficient:

correlation(x, y) =

∣
∣
∣
∣
∣
∣

∑N
i=1(xi − x)(yi − y)

√
∑N

i=1(xi − x)2
∑N

i=1(yi − y)2

∣
∣
∣
∣
∣
∣

, (x �= y).

Generally, an absolute value of 0.0 - 0.2 for the correlation coefficient means there
is scarcely any correlation, 0.2 - 0.4 means some correlation, 0.4 - 0.7 means good
correlation, and 0.7 - 1.0 means strong correlation.

This method applies the k-NN method to all working sensors and uses the sum of the
Euclidean distance divided by the correlation coefficient defined as correlated distance
d. The correlation is calculated from variance of the pair data. Data of sensor m is
complemented with data of sensor m in the pair vector whose dm,i is minimum, as the
following equation shows.

dm,i =

√
√
√
√

∑

j∈working

{xj − pij}2

correlation(xm, xj)

In this method, Euclidean distances among strongly correlated sensors carry much
weight and scarcely correlated sensors carry little weight. At last, we find the nearest
pair vector P I=argmini(di), and the system outputs the complemented cognitive vector
C = (c1x, c1y, c1z, · · ·, cj , · · ·, c5x, c5y, c5z).

cj =
{

xj (j ∈ working)
pIj (j ∈ malfunctioning)

Someone might think that using multiple classifiers for each sensor combination is
as practical as our approach. However, an advantage of our approach is that it works
independently of classifier. The data of a classifier is always assumed to be complete,
and a classifier does not require any configurations. If a better classifier is found in the
future, integrating it with our proposal would be easy.
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3 System Structure

The purpose of pseudo data generation is to manage hardware errors of sensors (miss-
ing data) to maintain the accuracy of context recognition. On the other hand, even when
no sensor breaks down, power consumption can be reduced by turning off redundant
sensors. Therefore, we focus on the event when cognitive context (context to be recog-
nized) and required accuracy level differ according to situations and applications. We
propose a context-aware system, which achieves low battery consumption by consider-
ing the situation. In this section, we describe the details of our system and how to reduce
power consumption on the basis of the situation. Please note that we have already pub-
lished a paper on pseudo data generation in [8]. When multiple sensors are loaded for a
context-aware system, a result in [8] has demonstrated that unnecessary sensors appear
thanks to pseudo data generation. This paper has constructed it as a system. In addition,
that we consider the followings for a better contribution.

3.1 Required-Accuracy-Based Power Saving

Required accuracy is different according to the situation. For example, while the high-
est accuracy is always required in fine-grained services, some users prefer low power
consumption (long battery lifetime) in daily activities. In detail, we set a threshold of
accuracy. In a serious situation (aerospace, battlefield), we set the accuracy at 90%.
Then, the best sensor combination is the least number of sensors needed to satisfy the
threshold. On the other hand, in a normal situation, the threshold is set at a lower value.
In this way, setting a threshold, we flexibly arranged the trade-off between accuracy and
power consumption compared to how the conventional system would have worked only
at full power.

However, turning off sensors simply leads to low power consumption and low accu-
racy. Hence, subsequently, we propose mechanisms to reduce power consumption while
maintaining accuracy.

3.2 Context-Granularity-Based Power Saving

Conventional context-aware systems require many sensors to recognize contexts with
high accuracy. However, in life, not all trained contexts will be a choice. In detail,
while a health-care system needs to recognize many detailed contexts, an information-
presentation system on an HMD (Head Mounted Display)[9] just has to judge whether
there is movement. Recognizing such easy contexts with fewer sensors is possible.

In this paper, we define context group which is a subset of trained contexts. For ex-
ample, given situations shown in Figure 3, Situation 1 is used in an application that
needs to know whether the user is moving. When a user is forbidden by a doctor to ex-
ercise strenuously, Situation 2 is used for an application to alert the user in case of high
levels of activity. Besides, Situation 3 is used for a health-care application to calculate
calorie consumption by recognizing detailed contexts. This method works as follows.
First, a user selects a situation according to his/her circumstances or active applica-
tions. Second, our system finds the sensor combination whose number of active sensors
is least while fulfilling the threshold of accuracy in the same manner as that described in
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Fig. 3. Context groups

Table 1. Context transitions

Previous context Possible context
walk walk, run, stairs, bike, lie, kneel, sit, stand (all contexts)
run walk, run, stairs, bike, stand

stairs walk, run, stairs, stand
bike walk, bike, stand
lie walk, lie, kneel, sit, stand

kneel walk, lie, kneel, sit, stand
sit walk, lie, kneel, sit, stand

stand walk, run, stairs, bike, lie, kneel, sit, stand (all contexts)

Section 3.1. If there is no situation that the user needs, he/she can define a new situation
by regroup contexts. For example, when a user wants to know the context of whether
another user is dead, he/she makes lying, kneeling, and sitting a group and makes other
contexts another group. When the former context-group lasts for a long time, you may
judge if a user is in a critical condition. Judging life and death plays an important role in
a wearable system. Detecting death is efficient for military purposes and elderly citizens
living alone. Using only one sensor to recognize contexts in Situation 1 is sufficient. By
turning redundant sensors off and by complementing data for them, we achieve a low-
power-consuming context-aware system with any classifier and training data.

3.3 Context-Transition-Based Power Saving

Focusing on transitions in a person’s actions, people basically continue the current con-
text, and that restricts the next context that occurs. A context transition from the re-
sult of our preliminary evaluation by 5 people (3 men and 2 women) with 9 contexts
(walking, running, descending steps, ascending steps, bicycling, lying, kneeling, sitting,
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and standing) is shown in Table 1. From Table 1, the candidates of context after bicy-
cling are expected to be “go on riding a bike” or “get off a bike”. Lying and kneeling do
not happen often in life. For using these characteristics first, we list context candidates
from all the contexts shown in Table 1. Second, a classifier is trained for all previous
contexts. When a user trains a classifier for recognizing walking, training data includes
only walking, running, stairs, and standing (see Table 1). The other contexts are trained
likewise. Finally, when a user is bicycling, the system recognizes contexts using the
trained classifier for bicycling. In this way, restricting candidates of possible contexts
based on the current context achieves a high recognition accuracy. This means that our
system requires fewer sensors, and power consumption can be reduced. When the num-
ber of cognitive contexts have increased, this mechanism becomes more effective. In
addition, context transitions are automatically constructed by using a record of daily
activities with sensors on at full power.

3.4 Algorithms for Context Recognition

There have been many kinds of algorithms for recognition. Our context-aware system
uses Support Vector Machine (SVM)[10] as a classifier. We also implemented sev-
eral classifiers such as Memory Based Reasoning (MBR) and Self-Organizing Maps
(SOMs)[11]. The tendency of evaluation results is the same among all classifiers, and
SVM achieves the best total accuracy among them, so we use SVM for the explanation.

SVM is a classification algorithm that often provides competitive or superior accu-
racy for a large variety of real-world classification tasks[10]. Consider the problem of
separating a set of training data (x1, y1), (x2, y2), · · ·, (xJ , yJ) into two classes, where
xi ∈ RN is a feature vector and yi ∈ {−1, +1} is its class label. Supposing that the
classes can be separated by the hyperplane w ·xi + b and no knowledge about the data
distribution is given beforehand, the optimal hyperplane is the one with the maximum
distance to the closest points in the training dataset. We can find the optimal values for
w and b by solving the following problem:

min
1
2
||w||2

subject to yi(w · xi + b) ≥ 1, ∀i = 1, · · ·, n.

The factor of 1/2 is used for mathematical convenience. By using Lagrange multipliers
λi(i = 1, · · ·, n), the expression is rewritten in this way:

max
N∑

i=1

λi −
N∑

i,j=1

λiλjyiyjx
T
i xj , subject to

N∑

i=1

yiαi = 0, λi ≥ 0.

That results in a classification function

f(x) = sign

(
n∑

i=1

λiyixi · x + b

)

. (1)

Most of the λi take the value zero. Those f(xi) with nonzero λi are so-called support
vectors, all of which are on each hyperplane. In cases where the classes are not sepa-
rable, the Lagrange multipliers are modified to 0 ≤ λi ≤ C, i = 1, · · ·, n, where C is
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the penalty for misjudgement. This arrangement is called soft margin and is the reason
SVM performs well.

The original optimal hyperplane algorithm proposed by Vapnik was a linear clas-
sifier. To obtain a nonlinear classifier, one maps the data from the input space R

N to
a high dimensional feature space by using x → Φ(x). However nonlinear classifiers
were created by applying the kernel trick to maximum-margin hyperplanes. Assum-
ing there exists a kernel function K(x, x

′
) = Φ(x) · Φ(x

′
), a nonlinear SVM can be

constructed by replacing the inner product x · x
′

by the kernel function K(x, x
′
) in

Eq. 1. Commonly used kernels are polynomials K(x, x
′
) = (γx · x′

+ c)d, the Gaus-
sian Radial Basis Function (RBF) K(x, x

′
) = exp(−γ||x − x

′ ||2), and the sigmoid
K(x, x

′
) = tanh(γx · x′

+ c).
We have examined the kernels while changing their parameters: penalty C: 5,000,

50,000, and 500,000; γ in RBF and sigmoid: 0.0001, 0.005, 0.001, 0.01, 0.1, and 1; and
constant c in RBF and sigmoid: 0, 0.1, and 1. No kernel exhibited better performance
than that of linear classification, and a C of 50,000 exhibited the best performance. The
extension of a 2-class SVM to the N-class can be achieved, e.g., by training N SVMs,
one class will be separated from the others.

4 Evaluation

In this section, we evaluate our system on the basis of accuracy and power consumption.

4.1 Evaluation Environment

To evaluate our system, training data and test data were captured by five different test
subjects who wore five sensors: both wrists, both ankles, and hip. They acted according
to the scenario shown in Table 2. Each instruction is very simple. Instructions have a
high degree of freedom in activity, such as stopping halfway or walking to talk to other
people. This scenario includes the following nine basic activities: walking, running, as-
cending steps, descending steps, bicycling, lying, kneeling, sitting, and standing[5]. The
former four activities are dynamic and the latter five are static. The worn sensors were
three-axis accelerometers[12]. The sampling frequency was 20 Hz. The algorithm for
context awareness is Support Vector Machine (SVM) described in Section 3.4. Raw data
and hand-labeled contexts of two test subjects in the scenario are shown in Figure 4. As
shown in the figure, though general actions are similar to each other, detailed actions are
different. The subject of the upper part of the graph in the figure sometimes stops while
walking. On the other hand, there is little change in contexts for the subject of the lower
graph. In addition, before riding on a bicycle, the subject in the upper graph stands, and
the subject in the lower graph walks. In this way, the data used in a evaluation contains
various characteristics, so this data is suited for the evaluation.

Generally, using a context-aware algorithm, raw data would not be used but prepro-
cessed for extracting the feature values to grasp the meaning of sensed data. Supposing
time t = T now, the constructed context-aware system uses mean μi(T ) and vari-
ance σi(T ) for 20 samples of 15-dimensional sensed data (cognitive vector) ci(T ) (i =
1, · · ·, 15) retraced from time t = T .
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μi(T ) =
1
20

T∑

t=T−19

ci(t)

σi(T ) =
1
20

T∑

t=T−19

{

ci(t) − μi(t)
}2

Characteristic vector Z(T ) is normalized using the following equation for 30-dimen-
sional vector X(T ) = [μ1(T ), · · ·μ15(T ), σ(T ) · · · σ15(T )], where M and S are the
mean and the standard deviation of X , respectively.

Table 2. Scenario performed in evaluation

Outdoor phase
Instruction: Go to buy a juice at the co-op by bicycle
Laboratory → down stairs → to bicycle shed through corridor →
to co-op by bicycle → buy juice from a vending machine → back to the lab.

Indoor phase
Instruction: Read a journal and rest. Then, go upstairs for a job
look for a journal on bookshelves → read the journal on a chair →
take a rest on a sofa → recall a job and run upstairs → back to the lab.
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Table 3. Power consumption @ 5.18 V

Hardware Power consumption [mW ]

CLAD only 92.204
Inactive sensor 11.396
Active sensor 40.922

Z(T ) =
X(T ) − M

S

After this conversion, the mean and variance of Z(T ) become 0 and 1, respectively.
The logged data in the scenario were manually labeled, 20% of which becomes train-

ing data and the data for complementing while the remaining 80% of the data is used
for testing. The amount of the data used for complementing is much less than that in
testing, so our proposal makes a significant contribution without using all possible data
sets of all remaining sensors. In addition, the pair database is easy to construct because
its data need not be labeled.

4.2 Results

First, we measured power consumption of our hardware: CLAD and sensors. The results
are shown in Table 3. Each inactive sensor consumes 11.4 mW as a standby power
requirement. “CLAD only” means the power consumption for CLAD itself without any
sensor. According to this table, 297 mW are consumed in full-power operation (5 active
sensors and CLAD).

Evaluation of Context Group. The first result is the accuracy of the context groups
described in Section 3.2. The results are plotted in the group× group confusion matrices
shown in Figure 5. These results were obtained with five active sensors and without any
complementing. Each cell indicates the number of positives per activity (with the true
positives diagonally), the accuracy indicates the percentage of true positives over each
activity. The matrix makes the difficulty of each context clear: which context is easily
recognizable. As you see, the accuracies are vastly different by a context: bicycling and
lying are high, but descending and kneeling are low. For this result, the clear point is
that a more abstract group achieves a better classification percentage.

As a second result, the accuracy in changing the complementing method for each
context-group is plotted in Figure 6. The horizontal axis indicates 31 combinations of
active and inactive sensors (© means active, a blank means inactive). The vertical axis
indicates the accuracy of context recognition. The partitions in the graph indicate a
border between active sensors. As mentioned above, the more abstract a situation is,
the more the accuracy increases. As sensors are turned off, the accuracies decreases,
but their decreases are small due to the complementing mechanism, as described in
Section 2. For a comparison, we show the accuracy without our complementing. In this
case, inactive sensor data is replaced with an average of the other active sensor data. If
not complemented well, the decreases are significant[8]. For this result, in Situation 1
with more than one sensor, the accuracies are the same as that at full power. Situation 2
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(c) Situation 3: 87.69% on average (not over all data but contexts)

Fig. 5. Confusion matrices for each situation

exhibits the same tendency as that of Situation 1. Though Situation 3 also has the same
tendency, the accuracies on the whole are worse than that of other situations because of
the cognitive complexity. In short, the power consumption can be reduced by turning off
sensors while maintaining the accuracy, and the accuracy increases with an appropriate
situation. Optimal sensor combinations in each situation are shown in Table 4. The
tolerances of accuracy are supposed to be 94, 90, and 87%. We assume that the tolerance
is the accuracy decided by the user or application; under severe conditions, tolerance
will be high, or tolerance may be low for a long battery lifetime in daily life. In each
situation with each tolerance, our system selects the fewest number of sensors so that the
accuracy of a combination satisfies the tolerance. In the present circumstances, we need
to determine an optimal sensor combination for each situation by actual measurement
in the same manner as that shown in Figure 6. Power consumption is calculated from
Table 3. (e.g., with four active sensors, the power consumption becomes 92.2 + 40.9×
4 + 11.4 	 267[mW ].) The reduction rate is the percentage of power consumption
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Fig. 6. Accuracy vs. sensor combination in each situation

Table 4. Optimal sensor combinations and their power consumption

Tolerance Situation
No. of Combination of Accuracy Power Reduction
sensors active sensors [%] consumption [mW ] [%]

94%
1 3 L-wrist, Hip, R-leg 94.30 238 19.9
2 5 ALL SENSORS 92.72 297 0
3 5 ALL SENSORS 87.38 297 0

90%
1 1 R-leg 92.03 179 39.8
2 2 R-leg, R-wrist 91.50 208 29.8
3 5 ALL SENSORS 87.38 297 0

87%
1 1 R-leg 92.03 179 39.8
2 2 R-wrist, R-leg 91.50 208 29.8
3 3 L-leg, Hip, R-leg 87.08 238 19.9

that is reduced compared to that in full power. Note that if no combination achieves the
tolerance, the system works with five active sensors. Even with 94% tolerance, power
consumption is 20% reduced in Situation 1. Moreover, with 87% tolerance, not all five
sensors are not required in all situations.

Evaluation of Context Transition. The accuracy of context recognition considering
the human context transition in Table 1 is shown in Table 5. These results were ob-
tained with five active sensors. According to the result, the accuracy was improved for
all contexts. For example, when a user changes his/her action from bicycling to walk-
ing, the system made 75 mistakes for running and 147 mistakes for sitting without
considering transition. However, considering the context transition, running and sitting
were excepted from the context candidates. By removing unimaginable contexts, from
bicycling, walking was recognized to be 91.74% (3.99% improved). Accuracies when
context transition is applied in all sensor combinations are shown in Figure 7. The envi-
ronment is Situation 3 (9 contexts). Each axis is the same as that of Figure 6. According
to Figure 7, the accuracies in all combinations were improved (2.55% on average). A
combination of a smaller number of sensors, which has not been selectable because
of low accuracy, becomes selectable, e.g., an accuracy at full power before applying
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Table 5. Change in accuracy by context-transition

Previous context Next context
Accuracy

Before After

run

walk 87.75 90.49
run 84.72 87.10

descend 78.02 82.31
ascend 82.45 84.21
bicycle 98.42 98.47
stand 85.02 88.17

stairs

walk 87.75 92.32
run 84.72 88.03

descend 78.02 84.35
ascend 82.45 85.79
stand 85.02 89.31

Previous context Next context
Accuracy

Before After

bicycle
walk 87.75 91.74

bicycle 98.42 98.58
stand 85.02 88.89

lie
kneel

sit
stand

walk 87.75 93.19
lie 98.68 99.24

kneel 79.35 91.14
sit 94.75 97.53

stand 85.02 87.52
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Fig. 7. Accuracy vs. sensor combination before and after applying context-transition

context transition (87.38%) is overtaken by that of 3 sensors after applying context
transition (88.91%).

Finally, we consider a combination of all mechanisms. A context-granularity-based
method and a context-transition-based method can co-exist. Considering the context-
transition of context groups in this paper is difficult. Static and Dynamic groups can
change to each other in Situation 1. Static, light action, and hard action groups can also
change to each other. However, when there are more contexts to recognize, there will be
many context groups. In such a case, by using our proposals at the same time, restricting
transitions between context groups results in a better performance. Further evaluation
and power measurement is part of our future work.

5 Conclusion

We have constructed a context-aware system that changes sensor combinations consid-
ering the energy consumption. By assuming the granularity of cognitive contexts differs
according to situations, we defined “context group” by including some similar contexts.
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In addition, we focused on a transition in human actions to improve the accuracy by re-
ducing the number of the candidates of possible contexts. The proposed system changes
the granularity of cognitive contexts of a user’s situation and manages the power sup-
ply on the basis of an optimal sensor combination. From the evaluation, clearly, not
all sensors are needed to recognize required contexts according to situations. As a re-
sult, our system has achieved a reduction in energy consumption. The advantage of our
system is that even if the number of sensors changes, the system does not require any
extra classifiers and training data because the data for sensors that have been shut off is
complemented by our proposed algorithm.

As future work, we plan to propose a mechanism for automatic change of the current
situation. In our current system, we have to change the situation by hand or another
device. The system may be able to decide the current situation by using co-occurrence
information among contexts. In addition, context transition is applied according to a
binary decision. There is a method limiting context with conditional probability such
as in a Bayesian network. Such probabilistic approaches have flexibility, but they have
the weakness of unexpected events such as change of context, which rarely happens.
This problem is our ongoing study. Furthermore, we think our approach is applicable to
wireless sensors that use sleep commands. We also plan to evaluate power consumption
of wireless sensors.
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