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ABSTRACT
Mobile phones and video game controllers using gesture recog-
nition technologies enable easy and intuitive operations, such as
scrolling a browser and drawing objects. However, usually only
one of each kind of sensor is installed in a device, and the effect
of multiple homogeneous sensors on recognition accuracy has not
been investigated. Moreover, the effect of the differences in the mo-
tion of a gesture has not been examined. We have investigated the
use of a test mobile device with nine accelerometers and nine gy-
roscopes. We have captured the data for 27 kinds of gestures for a
mobile tablet. We experimentally investigated the effects on recog-
nition accuracy of changing the number and positions of the sen-
sors and of the number and kinds of gestures. The results showed
that the use of multiple homogeneous sensors has zero or negligi-
ble effect on recognition accuracy, but that using an accelerometer
along with a gyroscope improves recognition accuracy. They also
showed that some gestures were not consistent among test subjects
and interdependent, so selecting specific gestures to use can im-
prove recognition accuracy.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; H.5.1
[Information interfaces and presentation]: Multimedia informa-
tion system—Evaluation/methodology; I.5.4 [Pattern Recognition]:
Application—Waveform analysis

General Terms
Experimentation, Measurement
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1. INTRODUCTION
Many kinds of mobile devices containing small sensors have

been released, and their applications and supporting services have
attracted a great deal of attention. In particular, an accelerome-
ter is installed in most current mobile devices, such as iPhone and
Android-powered devices and controllers for the Wii and PS3 video
game consoles, which enables easy and intuitive operations. Usu-
ally only one accelerometer is installed in commercial devices for
energy saving and small footprint purposes. A high degree of ac-
curacy is required since failure in gesture recognition degrades in-
terface usability. The effect on accuracy of changing the number of
sensors has not been investigated. Using multiple sensors increases
the processing time for recognition, which would lead to less inter-
face usability. In addition, whether recognition accuracy is affected
by the number and kinds of gestures has not been studied.

We conducted an experiment capturing 27 kinds of gestures with
9 accelerometers and 9 gyroscopes and investigated the effect on
recognition accuracy of changing the number of sensors and their
positions and changing the number and kinds of gestures.

This paper is organized as follows. Section 2 describes the fac-
tors that affect recognition accuracy. Section 3 describes the exper-
iment conducted to evaluate the effect of the number and position
of sensors and of the number and kinds of gestures. The results are
presented and discussed in Section 4. An application using gesture
recognition technology is described in Section 5. The key points
are summarized and future work is mentioned in Section 6.

2. FACTORS IN GESTURE RECOGNITION
ACCURACY

The important factors affecting gesture recognition accuracy in-
clude the number of sensors, position of sensors, number of ges-
tures, and kinds of gestures. While the form of the device is an
important factor in terms of affordance, it is ignored here since it is
not realistic to change the form of the device for recognition accu-
racy without taking its design into consideration.



Table 1: Sensors commonly installed in commercial devices.
Device Number and kind Manufacturer
Apple iPod nano (5th generation) One 3-axis accelerometer STMicroelectronics
Apple iPhone 3GS One 3-axis accelerometer STMicroelectronics
Apple iPhone 4S One 3-axis accelerometer STMicroelectronics

HTC Dream (T-Mobile G1) One 3-axis accelerometer Asahi Kasei MicrosystemsOne 3-axis geomagnetic sensor
Nintendo Wii remote One 3-axis accelerometer STMicroelectronics
Nintendo Nunchuk One 3-axis accelerometer Analog Devices, Inc.

Nintendo Wii motion plus One 2-axis gyro INVENSENSE
One 1-axis gyro EPSON TOYOCOM

(a) iPod nano (5th
generation)

(b) iPhone 3GS (c) iPhone 4S

(c) Wii remote
(d) T-Mobile G1

Figure 1: Positions of sensors installed in commercial devices.

2.1 Number and positions of sensors
Table 1 summarizes the number and kinds of sensors commonly

installed on commercial devices. Apple’s iPod and iPhone and
Nintendo’s Wii remote and Nunchuk use one 3-axis accelerometer.
Nintendo’s Wii motion plus, a device for enhancing the Wii remote,
contains a 2-axis gyro and a 1-axis gyro, which together detect 3-
axis angular velocity. HTC Dream (also marketed as T-Mobile G1
in the US and parts of Europe), Android-powered phone, has a 3-
axis accelerometer and a 3-axis geomagnetic sensor. One device
usually has only one sensor of each kind, and, as far as we know,
no device with multiple homogeneous sensors has been released.

The positions of the sensors in the iPod, iPhone 3Gs, iPhone
4S, Wii remote, and HTC Dream are shown in Figure 1 with �
marks. The accelerometer and geomagnetic sensor are installed at
the same position in the HTC Dream. As shown in the figure, there
is no consistent positioning of the sensors. Sensor positions are
not coordinated, especially in the iPod, iPhone 3GS, and iPhone
4S. This indicates that the positions probably depend on hardware
limitations.

Murao et al. [?] measured the recognition accuracies of daily
movements for all sensor combinations of five 3-axis accelerome-
ters attached to a subject’s wrists, ankles, and hip. The results show

that recognition accuracy depends on the number of sensors and
their combination. Therefore, the effect of the number and position
of sensors should be taken into consideration in addition to energy
consumption, implementation space, and wiring when developing
new devices.

2.2 Number and kinds of gestures
The number and kinds of gestures also affect recognition accu-

racy. Many systems using gesture recognition technology with ac-
celerometers have been proposed. The method proposed by Graeme
et al. [?] annotates video-recorded activities by gesture recogni-
tion using one accelerometer mounted on the wrist since annotating
video is difficult only by analyzing video. It uses hidden Markov
models (HMMs) [?] for the recognition, resulting in only one mis-
take in 30 trials for three kung-fu martial art movements: cut, el-
bow, and punch.

The system proposed by Liu et al. [?] recognizes eight gestures
including drawing a line or a circle (recommended by Nokia labo-
ratories), with one 3-axis accelerometer. They captured more than
4,000 samples for 8 test subjects over a long period, using dynamic
time-warping (DTW) [?] as a recognition algorithm. Accuracy of
98.6% was achieved by successively renewing the training data.

The system proposed by Junker et al. [?] recognizes ten daily
short actions, such as pushing a button and drinking, and achieves
approximately 80% precision and recall. The innovative feature
of this system is that it partitions the stream of sensor data into
several segments that represent atomic human movement by using
the sliding-window and bottom-up (SWAB) algorithm [?].

The Georgia tech gesture toolkit [?] has been proposed as a tool
to support gesture recognition. The toolkit enables ordinary users
to use the HMM toolkit [?] with ease, which facilitates using HMM
but requires specialized knowledge of speech recognition. One of
its applications, gesture recognition with a 3-axis accelerometer on
the wrist and on the elbow, achieved 93.3% accuracy for ten kinds
of gestures such as grinding and sawing.

In these studies, the number of gestures to be recognized was
not many, and the effect of the number and kinds of gestures was
not reported. Though increasing the number of gestures to be rec-
ognized would enhance the interface, recognition accuracy would
drop. Our investigation clarified the effect of the number and kinds
of gestures, enabling application engineers to better select gestures
used in applications.

3. EXPERIMENT
This section describes the gesture recognition experiment we

conducted to investigate the effect on recognition accuracy of chang-
ing the number of sensors and their positions and of changing the
number and kinds of gestures.



3.1 Setup and procedure
Data on 27 kinds of gestures (Table 2) that could be performed

using a mobile tablet such as the iPad were captured 10 times for
each gesture for 8 subjects (7 male and 1 female) 21–26 years old.
A total of 2,160 samples were collected using 9 sensors placed on a
test board, as shown in Figure 2. The board was W117×H155×D16
[mm] and weighed 200 [g]. The sensors were WAA-006 sensors,
made by Wireless-T Inc.1 Each sensor comprised a wireless 3-axis
accelerometer and a 3-axis gyroscope. All the subjects were right-
handed and performed the gestures while holding the lower right
corner of the board with their right hand. The sampling frequency
was 50 [Hz]. To reduce errors due to individual interpretation, the
instructions were not given verbally. Instead, one of the authors
demonstrated the actual movement for each gesture.

3.2 Preprocessing
Since our objective was to investigate the effect of sensors and

gestures, the subjects were instructed to stand still before and after
each gesture to mark the starting and ending points of each gesture.
The waveform for each gesture was then extracted by checking for
displacements in the captured data. If x(t) − x(t), where x(t) is
a captured data point and x(t) is the moving average, exceeded a
threshold ε, the system detected a starting point. Otherwise, the
system judged that the subject was not gesturing. We set ε to 200
[mG] since the fluctuation in the data while the subjects were sta-
tionary was up to 100 [mG]. Since the current value of x(t) might
have temporarily entered the region of x(t)± ε even while the sub-
ject was gesturing, the gesture was judged to have ended only after
x(t) had been within the region for more than 0.25 [s]. This interval
was based on the results of pilot studies.

The data for one gesture consisted of 54 sequences (9 sensors ×
2 kinds × 3 axes). The collected data were manually labeled.

3.3 Recognition
Time-series data is widely used in various fields such as science,

medicine, economics, and engineering. Calculation of the similar-
ity between time-series data is required in order to perform data-
mining. A simple approach to measuring similarity is to use the
Euclidean distance, but the results are susceptible to temporal dis-
tortion, and the number of samples in two data sequences must be
equal.

A better approach is to use dynamic time-warping (DTW). The
DTW algorithm can be used to calculate the temporal non-linear
elastic distance between two sequences, which may vary in time,
and the number of samples in the sequences need not be equal.
For example, it can be used to find the similarity between two data
sequences for draw a circle in the air when the rotation speeds
differed.

The HMM is also famous for a method to treat time-series data
and some studies use it for gesture recognition. HMM outputs like-
lihood of unknown gestures for predefined gestures, while DTW
outputs spatial distance between gestures. Since distance is bet-
ter index than likelihood to measure the difference between time-
series, we adopted DTW in this paper.

The algorithm works as follows. For the sake of simplicity, we
assume there is data for one axis. Testing data X = (x1, · · · , xm)
and training data Y = (y1, · · · , yn), with lengthsm and n, respec-
tively, are compared, and anm×nmatrix d is defined: d(xi, yj) =
|xi − yj |. Next, warping path W = (w1, · · · , wk), which is the
path of the pairs of indices of X and Y , is found. W meets three
conditions:

1Wireless Technologies, Inc. http://www.wireless-t.jp

Table 2: List of gestures
ID Description Illustration

1 Tilt to the near side

2 Tilt to the far side

3 Tilt to the left side

4 Tilt to the right side

5 Tap upper side twice

6 Tap left side twice

7 Swing twice to the left side quickly

8 Swing twice to the right side quickly

9 Shuffle cards

10 Tap lateral edge as though sifting

11 Scoop

12 Lay cards

13 Gather cards

14 Rap table with the longer lateral edge

15 Rap table with the surface of the board

16 Knock the board twice

17 Turn the board over

18 Rotate clockwise on the table

19 Shift up

20 Shift down

21 Shift left

22 Shift right

23 Shift diagonally up

24 Shift diagonally down

25 Draw a circle

26 Draw a triangle

27 Draw a square



7      8      9

4      5      6
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Figure 2: Experimental board with nine sensors.

• Boundary
w1 = (1, 1), wk = (m,n)

• Seriality
wk = (a, b), wk−1 = (a′, b′)⇒ a− a′ ≤ 1 ∧ b− b′ ≤ 1

• Monotony
wk = (a, b), wk−1 = (a′, b′)⇒ a− a′ ≥ 0 ∧ b− b′ ≥ 0

To find the path with the lowest cost that meets these conditions,
the following steps are applied.

1. Initialization

DTW (0, 0) = 0
DTW (i, 0) =∞ for i = 1, · · · ,m
DTW (0, j) =∞ for j = 1, · · · , n

2. Do for i = 1 to m
Do for j = 1 to n

DTW (i, j) = d(xi, yj) +min

 DTW (i− 1, j − 1)
DTW (i− 1, j )
DTW (i , j − 1)

3. Output

Return DTW (m,n)/n

The obtained cost DTW (m,n) is the distance between X and Y .
The returnedDTW (m,n) is divided by n since the DTW distance
increases with the length of the training data.

The system recognizes gestures on the basis of the training data.
The distances for all the training data are calculated, and the train-
ing data with the shortest distance is identified. A gesture labeled
with the training data is then output. The DTW algorithm can
be used for multiple axes of accelerometers and gyroscopes. The
DTW calculation is carried out for each axis, and the sum of the
distances for all axes is used as the distance of the gesture.

In our evaluation, recognition accuracy was analyzed in two ways:
intra-subject and inter-subject. Intra-subject means the average ac-
curacy over the eight subjects after four-fold cross-validation was
conducted for each subject. Inter-subject means the use of one sub-
ject’s data for testing and the other subjects’ data for training, with
the average accuracy being measured over all subjects.

4. RESULTS AND DISCUSSION

4.1 Number and positions of sensors

4.1.1 Number
The recognition accuracy on average over the gestures, the maxi-

mum accuracy, and the minimum accuracy for each number of sen-
sors are shown in Table 3. The rows show the results for accelerom-
eter only, gyroscope only, and both. Tables 3(a) and 3(b) are for
intra-subject analysis and inter-subject analysis, respectively. For
example, for two sensors, the number of combination was 9C2 =
36. “Ave.” shows the average accuracy over the 36 combinations,
and “Max.” and “Min.” show the maximum and minimum accura-
cies among the 36 combinations, respectively.

These results show that the accuracies remained almost the same
when the number of sensors was increased. Comparison of the
intra-subject and inter-subject results shows that the intra-subject
ones were much better. This is because the training data included
only data for the subject making the gestures. Comparison of the
results for the two kinds of sensors shows that the gyro was slightly
inferior to the accelerometer and that using both an accelerometer
and gyro improved accuracy. This is related to the kinds of ges-
tures, which is discussed in Section 4.2.

The calculation cost increases with the number of sensors. The
operation time for recognizing one gesture was 30 [ms] with one
sensor and more than 500 [ms] with nine accelerometers and nine
gyroscopes. The number of samples for training data was one
for each gesture (total of 27 samples). The device used was an
Android-powered phone (HTC One X; Android 4.0 OS; NVIDIA
Tegra 3 (AP33/XMM6260) Quad-core 1.5 GHz) CPU. Even though
the operation time could be longer if other applications are running
in the background or the CPU is poor, the delay with one sensor
would not be significant, but the delay with multiple sensors would
likely irritate the user and lead to less usability.

4.1.2 Positions
To evaluate the positions of the sensors, the accuracy of one sen-

sor for each position was measured. The results are shown in Figure
3. The horizontal axis shows the sensor positions corresponding to
the numbers in Figure 2, and the vertical axis shows recognition
accuracy. The results for the intra-subject analysis show 0.98–0.99
accuracy with negligible differences, between the number and kind
of sensor. The results for the inter-subject analysis show that the
accuracy was lower and that the differences between the positions
were negligible. These results are supported by the data in Table
3: the range of accuracies among the same number of sensors was
quite small.

There was, however, an approximately 0.01 difference in accu-
racy between sensors 3 and 4 for intra-subject analysis (Fig. 3(a))
even though these sensors were placed on the same board and in
the same direction. To investigate this, we plotted the accelerom-
eter waveforms for two samples of the “Gather cards” gesture, for
which the difference was the greatest.The acceleration values for
the x-axis, y-axis, and z-axis for two “Gather cards” gestures per-
formed by the same subject are plotted in Figures 4(a), (b), and
(c). respectively. The “Gather cards” gesture is sliding the board
across a table as though gathering up cards, and the direction of
movement corresponds to the Z-axis. Figure 4(c) shows the accel-
eration values for the Z-axis for sensors 3 and 4 for two samples of
the gesture, resulting in similar waveforms. Since the gesture does
not move in the X-axis and Y-axis direction, both values should
be small. However, as shown in Figures 4(a) and (b), there was
inconsistent noise in the data for sensor 3 while the values for sen-



Table 3: Recognition accuracy vs. number of sensors.
(a) Intra-subject analysis

Number of sensors
1 2 3 4 5 6 7 8 9

Accelerometer
Ave. 0.989 0.992 0.992 0.993 0.993 0.993 0.994 0.994 0.994
Max. 0.994 0.995 0.995 0.995 0.995 0.995 0.995 0.994 0.994
Min. 0.982 0.985 0.985 0.988 0.989 0.991 0.992 0.993 0.994

Gyroscope
Ave. 0.991 0.992 0.992 0.992 0.992 0.992 0.992 0.992 0.992
Max. 0.993 0.994 0.993 0.994 0.993 0.993 0.992 0.992 0.992
Min. 0.988 0.990 0.990 0.990 0.990 0.991 0.991 0.991 0.992

Both sensors
Ave. 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
Max. 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
Min. 0.996 0.997 0.997 0.997 0.997 0.998 0.998 0.998 0.998

(b) Inter-subject analysis
Number of sensors

1 2 3 4 5 6 7 8 9

Accelerometer
Ave. 0.682 0.692 0.694 0.696 0.697 0.697 0.698 0.698 0.697
Max. 0.702 0.702 0.704 0.705 0.706 0.704 0.703 0.701 0.697
Min 0.661 0.674 0.682 0.687 0.688 0.691 0.693 0.695 0.697

Gyroscope
Ave. 0.638 0.639 0.639 0.639 0.639 0.639 0.639 0.639 0.640
Max. 0.642 0.646 0.644 0.644 0.643 0.644 0.642 0.642 0.640
Min. 0.631 0.629 0.632 0.634 0.633 0.635 0.635 0.637 0.640

Both sensors
Ave. 0.751 0.752 0.753 0.753 0.753 0.753 0.752 0.752 0.753
Max. 0.763 0.762 0.759 0.760 0.757 0.756 0.756 0.755 0.753
Min. 0.744 0.740 0.744 0.746 0.747 0.748 0.749 0.750 0.753
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(b) Gyroscope/Intra-subject
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(c) Both sensors/Intra-subject
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(d) Accelerometer/Inter-subject
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(e) Gyroscope/Inter-subject
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(f) Both sensors/Inter-subject

Figure 3: Recognition accuracy vs. sensor position.
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Figure 4: Two samples of “Gather cards” gesture for sensors 3
and 4.

sor 4 were small. This noise appeared only for the “Lay cards”
and “Gather cards” gestures, in which the board scraped the table.
The data for sensor 9 included the same noise. This noise appeared
only when the gestures were being performed. It might have been
caused by the pulsation of the scraping amplified in proportion to
the distance from the table surface. Further investigation will be
done to clarify this.

The gyroscope results show uniform accuracy against sensor po-
sition. Examination of gyration waveforms did not reveal any noisy
data. While some may think that shifting gestures do not involve
gyration components, shifting gestures are actually not parallel shift-
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Figure 5: Accuracy vs. number of gestures.

ing. They are sectoral shifting centered about the wrist or elbow,
which produces angular values, resulting in accurate recognition
with a gyroscope. Using an accelerometer and gyroscope together
improves accuracy because they covers their drawbacks each other.

4.1.3 Summary
In short, using multiple homogeneous sensors is not meaningful

much for accuracy. The sensor position does not affect accuracy
much. Using an accelerometer and gyroscope together slightly im-
proves accuracy.

4.2 Number and kinds of gestures

4.2.1 Number
We calculated the overall accuracy as we reduced the number of

gestures one by one, starting from one with the lowest accuracy.
The results are plotted in Figure 5; the gestures excluded at each
step are shown beneath the graph by sensor type for one test subject.

Specifically, 26 gestures were subject to recognition after exclud-
ing gesture 5 since gesture 5 had the lowest accuracy of the 27 ges-
tures. (In this evaluation, sensor 5 was used for the accelerometer,
gyroscope, and both sensors.) The accuracy for the accelerome-
ter, gyroscope, and both sensors reached 1.0 when the number of
gestures was respectively 13, 8, and 16.

The results for the accelerometer show that, though the average
accuracy for 27 gestures was 0.5+, an average accuracy of 0.9+
could be obtained for as many as 16 gestures by selecting ones that
are easily recognized, and for as many as 22 by also using a gy-
roscope. The gestures excluded for the accelerometer, gyroscope,
and both sensors were the tapping and shifting gestures. These ges-
tures are characterized by inconsistency, as mentioned in the pre-
vious section. These results are for one test subject, but the same
tendency was observed for the other subjects.

4.2.2 Kinds
The recognition accuracies for each gesture with sensors are shown

in Table 4.
From the intra-subject analysis, the accuracies of all gestures

were virtually 1.0 regardless of sensor kind. This is because the
training data included only data for the subject making the ges-
tures. Moreover, the results between trials were consistent. From
the intra-subject analysis for accelerometer, the accuracies for the
“Lay cards” (12) and “Gather cards” (13) gestures were lower than
those of the other gestures. This is because noise appeared in the
data for these gestures, as discussed in Section 4.1.2.

The inter-subject accuracy was much less since the training data
did not include data for the subject making the gestures. It was
almost zero for gestures 5 and 6. These gestures were recognized



Table 4: Accuracy for each gesture with sensor 5.

Gesture Intra analysis Inter analysis
Acc Gyro Both Acc Gyro Both

1 0.974 0.987 0.987 0.804 0.744 0.830
2 1.000 1.000 1.000 0.692 0.736 0.665
3 1.000 1.000 1.000 0.857 0.857 0.857
4 1.000 0.984 1.000 0.697 0.810 0.841
5 1.000 0.984 1.000 0.000 0.029 0.075
6 0.984 1.000 1.000 0.043 0.016 0.189
7 1.000 1.000 1.000 0.757 0.786 0.914
8 1.000 1.000 1.000 0.425 0.813 0.756
9 1.000 1.000 1.000 0.714 0.311 0.857
10 1.000 0.986 1.000 0.686 0.600 0.800

11 0.986 0.941 0.986 0.817 0.514 0.608
12 0.943 0.986 0.986 0.586 0.668 0.683
13 0.956 1.000 1.000 0.557 0.610 0.714

14 1.000 1.000 1.000 1.000 0.971 1.000
15 0.971 1.000 1.000 0.339 0.686 0.914
16 1.000 1.000 1.000 0.557 0.200 0.386

17 1.000 1.000 1.000 1.000 0.811 1.000
18 1.000 1.000 1.000 1.000 1.000 1.000
19 1.000 0.986 1.000 0.857 0.500 0.800
20 0.987 0.973 0.987 0.711 0.145 0.415

21 1.000 1.000 1.000 0.868 0.900 1.000
22 1.000 1.000 1.000 0.681 0.667 0.922
23 0.986 1.000 1.000 0.854 0.700 0.900
24 1.000 0.986 1.000 0.760 0.832 0.864
25 1.000 1.000 1.000 0.970 0.984 1.000
26 1.000 1.000 1.000 0.787 0.629 0.614
27 1.000 0.968 1.000 0.929 0.913 0.986

Average 0.992 0.992 0.998 0.702 0.646 0.763

as various gestures, such as “Swing twice to the left side quickly”
and “Knock the board twice.” This is attributed to the high degree
of freedom of tapping. In short, tapping involves the tapping points,
strength, and timing and the state of the hand holding the board (not
moving, absorbing shock, or hitting the left hand with the board).

In addition, the accuracy for gesture 2 was less than that for ges-
ture 1. This is because tilting to the far side is physically more
difficult than tilting to the near side. The accuracy for gesture 22
was less than that for gesture 21. This is because all the subjects
held the board with their right hand, and shifting right is harder than
shifting left. Gestures involving rotation and shifting are simple and
easy to use as interfaces, but they are affected by the orientation of
the device and the state of holding it.

The gyroscope accuracies for gestures 19 and 20 were less than
those of gestures 21 to 24. This is because shifting up and down is
done parallel to the face of the board while shifting right, left, diag-
onally up, and diagonally down involve sectoral movement, which
produces a rotation component that appears in the gyration values.
Combining an accelerometer with a gyroscope improves accuracy
by approximately 6% since each sensor obtained different compo-
nents.

4.2.3 Summary
In short, some gestures had low reproducibility, which degraded

recognition accuracy. The training for these gestures should thus be

Zoom-in  Page-up Quit

Go back Go forward

Add bookmark Page-down Zoom-out

Figure 6: A gesture-based browser.

done using data captured from many users or the user who is to use
the device. An adequately high degree of accuracy can be achieved
without excluding many gestures by selecting gestures that do not
conflict with each other and that have high reproducibility.

5. APPLICATION
An example of an application that was enhanced with gesture

recognition technology is the gesture-based browser shown in Fig-
ure 6. This browser uses several of the gestures used in our eval-
uation. For example, tilt invokes page-up/down, swing invokes
go back/forward, rap invokes stop loading/reload, shift invokes
scroll/zoom, and circle invokes add bookmark.

We do not think all the functions should be assigned to ges-
tures. However, assigning many functions to the limited number
of buttons forces users to select functions from a pop-up menu af-
ter pressing a “menu” button. A first level has six to eight choices
at most, forcing users to a select “more” button to go to the next
pop-up to select other functions. Such functions can be invoked
with a single action by using a gesture.

Recent smartphones have a 5-inch display; for example, the GALAXY
S III by SAMSUNG2 has a 4.8-inch display and the ONE X by
HTC3 has a 4.7-inch display. Users sometimes use both hands to
touch the display since the thumb usually does not reach the far
side of the display. Even in this case, gesture-based interaction can
be done with one hand (except for tapping and knocking) and does
not interrupt other activities, such as eating and writing.

6. CONCLUSION
2http://www.samsung.com/uk/consumer/mobile-
devices/smartphones/android/GT-I9300MBDBTU
3http://www.htc.com/uk/smartphones/htc-one-x/



We investigated the effect on gesture recognition accuracy of the
number and positions of sensors and of the number and kinds of
gestures for mobile devices. We experimentally evaluated the ac-
curacies for 27 kinds of gestures measured using a board on which
nine accelerometers and nine gyroscopes had been placed.

Using multiple homogeneous sensors did not improve accuracy
by much. On the other hand, using both an accelerometer and gy-
roscope improved accuracy. Recognition accuracy did not depend
on sensor position so much, but some gestures had noisy data de-
pending on the sensor position.

Gestures involving shifting the side on which the device was
held and tilting the far side of the device, which produced a small
amount of movement due to physical constraints, and tapping, which
had less consistency due to the high degree of freedom, were barely
recognized with an accelerometer and gyroscope together. How-
ever, 0.9+ accuracy was achieved for 16 kinds of gestures with an
accelerometer and 22 kinds of gestures with both an accelerometer
and gyroscope by selecting gestures that do not conflict with each
other and do have high reproducibility.

We plan to conduct further investigations of gestures.
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