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Abstract

There has been increasing interest in wearable com-
puting. In wearable computing environments, a wearable
computer runs various applications with various sensors
(wearable sensors). Since conventional wearable systems
do not manage the power supply flexibly, they consume ex-
cess power resources for unused sensors. Additionally, sen-
sors frequently become unstable for several reasons such as
a breakdown. This instability is hard to detect simply from
the sensed data. To solve these problems, we propose a new
sensor management device CLAD (cross-linkage for assem-
bled devices) that has various functions for power manage-
ment and sensed-data management. CLAD improves power
saving, data accuracy, and operational reliability.

1. Introduction

The downsizing of computers has led to wearable com-
puting attracting a great deal of attention. Wearable com-
puting is different from conventional computing in three
ways[1]. (1) Hands operation free : information can be ob-
tained without manual operation because the computer is
worn. (2) Power always on : the computer is always avail-
able because the power is always on. (3) Daily-life support
: daily activities can be supported because the computer is
worn all the time.

In particular, wearable sensors, which are sensors a user
wears, enable the provision of various services such as
navigation[2] and health care[3]. Although a user might
wear several sensors to use multiple services, as shown in
Table 1, some sensors may not always be used, e.g., health
care services when battery power is low and navigation ser-
vices when the user is indoors.

Since conventional systems using multiple sensors can-
not control the power supplied to the sensors individually,
unused sensors also consume power. Reducing the power
consumption is important because of the limited battery life
in wearable computing environments. Moreover, sensors

Table 1. Services using wearable sensors
Services Sensors

Health care
Heat sensor, GSR sensor
Accelerometer, Electric sphygmograph

Navigation GPS, Geomagnetic sensor, Gyro

can become unstable due to a malfunction, a power short-
age, overcurrent, and so on, and it is difficult to detect un-
stable operation from only sensed data.

To solve these problems, we developed a sensor man-
agement device that has various functions for power man-
agement and sensed-data management. This CLAD (cross-
linkage for assembled devices) device functions as a relay
device between wearable sensors and a wearable computer
and saves energy by managing the power supply to the sen-
sors on the basis of the given circumstances. Moreover,
CLAD detects errors from changes in the characteristics of
the sensors and generates pseudo data for malfunctioning
sensors. CLAD thereby improves data accuracy and system
operational reliability.

This paper is organized as follows. Section 2 describes
the system design of CLAD in terms of the structure, the
functions, and pseudo data generation. Section 3 presents
a practical implementation of CLAD. The performance of
CLAD is discussed in Section 4. Finally, Section 5 con-
cludes with a summary and a look at future work.

2. System Design

We designed CLAD assuming that a user wears vari-
ous types and numbers of sensors that continually consume
power and that sensing is not always required. CLAD is
positioned between a wearable computer and these sensors,
and it manages the sensors to achieve (1) flexible power sup-
ply control for energy saving, and (2) flexible error control
for achieving sufficient sensed-data accuracy.
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Figure 1. System structure of CLAD (not to
scale)

2.1. System structure

As shown in Fig. 1, CLAD has its own power source and
manages sensors connected to it. It monitors the voltage and
current to detect power shortages and overcurrents. Each
sensor has a microcomputer (CPU) to process commands
from CLAD. Information about the sensor (type, accuracy,
output range, start-up time, operating voltage, and operating
current) is stored in the CPU.

2.2. CLAD function

The functions of CLAD are divided into the power man-
agement and the data management. Talbe 2 shows the fea-
tures that contribute to each functions.

2.2.1 Power management

Alternative device retrieval and changeover
CLAD detects sensor anomalies from consecutive out-

lying data points, sensor data interruptions, etc. In such
cases, CLAD identifies an alternative device by referring to
the sensor profile information, and if one exists, it activates
it.
Power saving

CLAD always monitors its internal power source. If it
detects a power shortage, it reduces power consumption by
stopping power supply to some of the sensors on the basis
of a refusal policy.
Overcurrent detection

If overcurrent is detected, CLAD stops all power supply
for safety.

2.2.2 Data management

Error detection
CLAD detects problems such as outlying data and a dy-

ing battery. Since CLAD notifies the PC such problems,
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Figure 2. Pseudo data generation

applications can deal with them individually such as by dis-
playing a message recommending a battery change.
Pseudo data generation

When there is no alternative device, CLAD can generate
pseudo data from learned data and the correlation to other
sensors. This function improves operational reliability.

An example of pseudo data generation is shown in Fig. 2
for a context-aware system with five acclerometers. Sensor
5 is malfunctioning. The pseudo data is generated as fol-
lows.
Step 0. Constructs pair database

CLAD has already collected sensed data (pair vectors)
for all contexts and constructed a pair database.
Step 1. Acquire cognitive vector

When a sensor malfunction is detected, the system cre-
ates a cognitive vector, which is a set of sensed data without
data from the malfunctioning sensors.
Step 2. Extract pair vector from pair database

The system finds the pair vector in the database that is
nearest the cognitive vector by using the k-NN (k-nearest
neighbor) method.
Step 3. Extract pseudo data from pair vector

The data for sensor 5 is replaced with that of the ex-
tracted pair vector.

Since this pseudo data generation does not depend on
the sensor type or context-aware algorithm, it is applicable
to any system.

2.3 Pair vector extraction

We developed and tested three methods for extracting the
pair vector from the pair database in Step 2.



Table 2. Functions of CLAD������������
Power managemet Data management

Alternative device Power saving Overcurrent detection Error detection Pseudo data
Power control © © ©
Profile information management © © © ©
Voltage check for self © ©
Current check for self © ©
Voltage check for sensors ©
Current check for sensors © ©
Sensed-data management © ©

2.3.1 All Alive (AA) method

This method targets all working sensors for the k-NN calcu-
lation. From cognitive vector X = (x1x, x1y, x1z, · · ·, xj , · ·
·, x5x, x5y, x5z) and pair vector Pi = (pi1x

, pi1y
, pi1z

, · ·
·, pij

, · · ·, pi5x
, pi5y

, pi5z
) (i = 1, · · ·, N), euclidean dis-

tance dAAi
is calculated. The N is the number of samples

in the pair database.

dAAi
=

√ ∑
j∈working

{xj − pij
}2

By calculating the euclidean distance for all pair vec-
tors in the pair database, we find the nearest pair vec-
tor, PI{I|rAAI

=min(dAA1 ,···,dAAN
)}. The system outputs

the complemented cognitive vector, C = (c1x, c1y, c1z, · ·
·, cj , · · ·, c5x, c5y, c5z).

cj =
{

xj (j ∈ working)
pIj

(j ∈ malfunctioning)

2.3.2 Correlative Alive with Threshold (CA-Th)
method

The AA method uses the k-NN method for all working sen-
sors, and if the data of working sensors for two contexts
are nearly equal, the distance for these contexts is nearly
equal, making it difficult to extract the correct pair vector.
There is some correlation between sensor values, so the k-
NN method achieves more accurate data complementing.
We use the Pearson product-moment correlation coefficient:

correlation =




∣∣∣∣∣∣
∑N

i=1
(xi−x)(yi−y)√∑N

i=1
(xi−x)2

∑N

i=1
(yi−y)2

∣∣∣∣∣∣ (x �= y)

0 (x = y).

Generally speaking, an absolute value of 0.0-0.2 for the
correlation coefficient means scarcely any correlation, 0.2-
0.4 means some correlation, 0.4-0.7 means good correla-
tion, and 0.7-1.0 means strong correlation. Since the corre-
lation coefficient between the same sensed data is always 1,
the system sets it to zero in the calculation. In the CA-Th

method, the eculidean distance revised using the correlation
coefficient is called correlated distance dTh. This method
sets a threshold for the correlation coefficient and applies
the k-NN method only to sensors with good or strong cor-
relation.

dThi
=

√ ∑
j∈working

{xj − pij
}2 · α

α =
{

1 (if correlation ≥ threshold)
0 (otherwise)

2.3.3 Correlative Alive with Distance/Correlation
(CA-DistCor) method

The CA-DistCor method applies the k-NN method to all
working sensors, as does the AA method, and it uses the
sum of the euclidean distance divided by correlation coef-
ficient defined as correlated distance dCD. The calculation
of the correlation coefficient is the same as in the CA-Th
method.

dCDi
=

√∑
j∈working{xj − pij

}2

correlation

In this method, euclidean distances among strongly cor-
related sensors carry much weight and scarcely correlated
sensors carry little weight.

3. Implementation

We implemented a prototype CLAD device using a
Microchip PIC16F873A microcontroller as a processing
unit. We implemented the system software on a Microchip
MPLAB ICD with a CCS PIC C compiler. The prototype
and wearable sensors are shown in Fig. 3. Table 3 shows
its specifications. Each wearable sensor has a processing
unit for communication control. CLAD measures the power
source voltage using a zener diode. An LTS6-NP current
transducer (LEM) is used for current monitoring. Table
4 lists the control commands. Table 4(a) shows the control
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Figure 3. Prototype of CLAD

Table 3. Specifications of CLAD prototype
Connection method RS232C
Power source 4 dry cell batteries (AA)
Communication speed 9600 bps (Max.)
Size (main body only) W76 × H13 × D70 mm

Weight
Without battery and cable 130 g
With battery, without cable 280 g
With battery and cable 292 g

Power consumption (CLAD only) 0.05 W

commands from CLAD to the sensors for managing power
control and sensed-data requests, Table 4(b) shows the com-
mands from CLAD to the PC for sending status reports, and
Table 4(c) shows the commands from the PC to CLAD for
controlling the CLAD functions. When a new sensor is at-
tached to CLAD, it sends its profile information to CLAD.
CLAD then sends commands to the sensor for controlling
it on the basis of the commands from the PC. When CLAD
detects a sensor error or other problem, it sends an alert to
PC and displays them.

4. Evaluation

4.1 Performance of energy-saving func-
tion

Figure 4 shows the performance of CLAD’s power sav-
ing function when there are six accelerometers. Power con-
sumption did not vary when CLAD was not used because
the sensors were always active. When CLAD was used,
power consumption could be varied by changing the num-
ber of active sensors. Power consumption with CLAD was
higher than without CLAD for six sensors due to the opera-
tion cost of CLAD itself.

Table 4. Command tables

(a) Sensor control commands

Power off
Sensing data request

Profile request
Power on

(b) PC control commands

Overvoltage
Overcurrent

Data annomaly
Sensor annomaly
CLAD start-up

CLAD end

(c) CLAD control commands

Pseudo data generation
On
Off

Filtering
On
Off

Data mergence
On
Off

Change importance
High
Low

Change criteria

Importance
Rareness

Power consumption
Accuracy

Start-up time

Power supply
Start
Stop

Sensing
Start
Stop

Profile information request
CLAD end
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Figure 4. Power consumption vs. no. of ac-
tive sensors

Figure 5 shows example daily activities for a wearable
user. The user uses health care, agricultural support, and
navigation services. Their power consumptions are 0.5, 1.5,
and 0.1 W respectively. Working from 9 a.m. to 0 a.m.
without CLAD results in total power consumption of 31.5
Wh, while with CLAD it is 13.75 Wh. CLAD achieves a
56.3% reduction.



Health care

Agriculture Agriculture

9 12 18 21

Navigation

time
24

Wakeup Go to bedEat

Get off work

Figure 5. Daily activities for wearable user

4.2 Performance of pseudo data genera-
tion function

For this evaluation, a user wore five sensors (both wrists,
both ankles, and one hip). We evaluated the recognition ac-
curacy of the three proposed methods for 10 contexts: walk,
run, climb steps, descend steps, jump, bicycle, lie, kneel,
sit, and stand[4] on all combinations other than all sensors
are malfunctioning (31 patterns). The sensors were com-
pact wireless accelerometers (WAA-001, Wireless Tech-
nologies, Inc.)[5]. The sampling frequency was 20 Hz. The
algorithm for a context awareness incorporated memory-
based reasoning (MBR), euclidean distance, and the k-
nearest neighbor (k-NN) method. The constructed context-
aware system used mean µi,T and variance σi,T for 20 sam-
ples of each component ci,T of 15-dimensional sensed data
(cognitive vector) retraced from time t = T .

µi,T =
1
20

T∑
t=T−19

ci,T

σi,T =
1
20

T∑
t=T−19

{
ci,t − µi,T

}2

To trim down the dimension, we calculated the average of
x-, y-, and z-axis of µi,T and σi,T . Six-dimensional vector
XT was generalized using the following equation for char-
acteristic vector ZT , where MT and ST are the mean and
variance of XT , respectively.

ZT =
XT − MT

ST

The system calculated the euclidean distance between the
cognitive vector and a training vector and recognized con-
text using the k-NN method (k=1).

The results of the AA and CA-Th methods are plotted in
Figure 6. The horizontal axis shows the 31 combinations of
working and malfunctioning sensors (© means working, a
blank means malfunctioning). The vertical axis shows the
accuracy of context recognition. We used the correlation
coefficient of the variance and set the threshold (Th) to 0.2,
0.4, or 1.0. The results for AA and CA-Th with Th = 0.2,
or 0.4 were the same except for some combinations. The

0

10

20

30

40

50

60

70

80

A
c
c
u
r
a
c
y
 [
%
]

AA

CA-Th (Th=0.2)

CA-Th (Th=0.4)

CA-Th (Th=1.0)

○○○○○○○○○○○○○○

○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○

○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○

○○

○

○

○

○○

○○

○

○

○

R-Leg

R-Wrist

Hip

L-Wrist

L-Leg

R-Leg

R-Wrist

Hip

L-Wrist

L-Leg

Figure 6. AA method vs. CA-Th method
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Figure 7. AA method vs. CA-DistCor method

AA method was better when there were one or two working
sensors. Th = 1.0 was obviously inferior.

The results of the AA and CA-DistCor methods for two
setting (k=1 and k=11) and using their mode are shown in
Figure 7. The AA method is had slightly better results.
Comparing k=1 and k=11, we see that k=11 was better
when there were fewer sensors (right half of Fig. 7) and
that k=1 was better otherwise (left half of Fig. 7).

Since the AA and CA-DistCor methods had almost
equivalent performance, we can complement data with high
reliability by changing the number of nearest neighbors.

Although the AA and CA-DistCor methods with k=1 had
high accuracy, since both of them select the nearest pair vec-
tor, the probability of extracting a correct pair vector drops
with the number of working sensors. However, the drops for
k=11 were not deeper. In other words, with many malfunc-
tioning sensors, we should select a pseudo data not from the
nearest neighbor but from multiple nearest neighbors.

This experiment did not evaluate the performance of
methods using the correlation coefficient because there may
be evenly high relationships among the contexts. Therefore,
we did an additional experiment to evaluate their perfor-
mance. Figure 8 shows recognition accuracy against squat
with and without arm rotation (Fig. 9). As indicated by
the arrows, the CA-DistCor method performed better. This
is because the correlations between the hips and same-side



50

60

70

80

90

100

A
c
c
u
r
a
c
y
 [
%
]

AA

CA-DistCor

○○○○○○○○○○○○○○

○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○

○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○

○○

○○

○

○

○

○○

○○

○

○

○

R-Leg

R-Wrist

Hip

L-Wrist

L-Leg

R-Leg

R-Wrist

Hip

L-Wrist

L-Leg

Figure 8. AA method vs. CA-DistCor in addi-
tional experiment

Figure 9. Action for additional experiment

wrists were high, so the value for the wrist sensor was com-
plemented by that of the hip sensor. This means it is better
to use correlation for similar contexts.

Table 5 shows the processing times for the three methods
using a SONY VGN-U50 ultra-mobile PC (Celeron M, 900
MHz) as a wearable computer. Since the processing times
for all the methods were less than 50 msec, which the in-
terval for data input (20 Hz), the system achieves real-time
processing. The greater the number of malfunctioning sen-
sors, the greater the number of sensors that have to be com-
plemented. However, since the number of the working sen-
sors used in the retrieval comes from pair data deteriorates,
the calculated amount is less. Therefore the processing time
does not linearly increase with the number of malfunction-
ing sensors.

5. Conclusion

We have designed and implemented CLAD, a sensor
management device for wearable sensors. CLAD achieves
power saving by managing sensor power on the basis of

Table 5. Processing times (msec)
������������

No. of
malfunctioning sensors

Method
AA CA-Th CA-DistCor

1 8.008 21.936 23.329
2 6.964 35.167 37.256
3 5.571 40.738 42.479
4 3.830 38.301 39.345

the circumstances and high data reliability by managing
the sensed data. Three methods were tested for generating
pseudo data for malfunctioning sensors. They can be ap-
plied to other algorithm such as SVM (support vector ma-
chine) and HMM (hidden markov models) because our ap-
proach is independent of the context-aware algorithm. An
evaluation experiment showed that CLAD does save power
and does complement data effectively. We plan to reduce
the size of CLAD, implement applications using CLAD,
and develop another method for generating data with higher
accuracy. Moreover, by changing the sensor combinations
to match the circumstances, we can construct a context-
aware system that performs with high accuracy and low
power consumption.
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