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Abstract

Mobile phones or video game controllers using gesture
recognition technologies enable easy and intuitive opera-
tions. However, usually only one of each type of sensor is
installed in each device, and the effect of multiple sensors on
recognition accuracy has not been investigated. Moreover,
the effect of the differences in the motion of a gesture has
not been examined. We captured data for 27 kinds of ges-
tures by using a mobile device with 9 accelerometers and 9
gyroscopes, we then experimentally investigated the effects
on recognition accuracy of changing the number and posi-
tions of sensors, and the number and kinds of gestures. The
results showed that the use of multiple sensors and of sen-
sors positioned at specific positions affects accuracy. It was
also shown that gestures are interdependent and selecting
specific gestures improves recognition accuracy.

1. Introduction

Many kinds of devices containing small sensors have
been released, and their applications have attracted a great
deal of attention. In particular, an accelerometer is installed
in most current mobile phones, such as the iPhone and
Android-powered devices, and video game controllers for
Wii or PS3, which enables easy and intuitive operations.
Usually only one accelerometer is installed in commercial
devices for energy saving and small footprint purposes. A
high degree of accuracy is required since failure in gesture
recognition deteriorates usability of the interface. Though
use of multiple sensors would improve accuracy, the effect
on accuracy of changing the number of sensors has not been
investigated. In addition, whether recognition accuracy is
affected by the kinds and number of gestures has not been
studied.

We conducted an experiment capturing 27 kinds of ges-
tures with 9 accelerometers and 9 gyroscopes, and we in-
vestigated the effect on recognition accuracy of changing

(a) iPod (b) iPhone (c) Wii remote (d) T-Mobile G1

Figure 1. Positions of sensors installed in
commercial devices.

the number of sensors and their positions, and the kinds and
number of gestures.

2 Factors in gesture recognition accuracy

2.1 Number and positions of sensors

The iPod and iPhone by Apple Inc. and the Wii remote
and Nunchuk by Nintendo use a 3-axis accelerometer. Wii
motion plus, a device for enhancing the Wii remote, contains
a 2-axis gyro and a 1-axis gyro, which together detect 3-axis
angular velocity. A sensor with a 3-axis accelerometer and
3-axis geomagnetic sensor is installed in T-Mobile G1, an
Android-powered phone. One device usually has only one
sensor of each type, and as far as we know, no device with
multiple homogeneous sensors has been released. The po-
sitions of sensors installed in the iPod, iPhone, Wii remote,
and T-Mobile G1 are shown in Figure 1 with � marks, re-
spectively. These marks show there is no consistent posi-
tioning for sensors in these devices. Since sensor positions
are not coordinated, especially in the iPod and iPhone, we
suggest the positions of sensors extensively depend on the
limitations of the hardware implementation.

One study[2] has measured the recognition accuracies of
daily movements for all sensor combinations of five 3-axis
accelerometers attached to both wrists, both ankles, and the
hip of a subject. The results show that recognition accu-
racies change according to the number of sensors and the
sensor combinations.
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Table 1. List of gestures
ID Gesture Figure ID Gesture Figure ID Gesture Figure

1 Tilt to the near side 10 Tap lateral as though sifting 19 Shift up

2 Tilt to the far side 11 Scoop 20 Shift down

3 Tilt to the left side 12 Lay cards 21 Shift left

4 Tilt to the right side 13 Gather cards 22 Shift right

5 Tap upper side twice 14 Rap table with the longer lateral 23 Shift diagonally up

6 Tap left side twice 15 Rap table with the face of the board 24 Shift diagonally down

7 Swing twice to the left side quickly 16 Knock the board twice 25 Draw a circle

8 Swing twice to the right side quickly 17 Turn the board over 26 Draw a triangle

9 Shuffle cards 18 Rotate clockwise on the table 27 Draw a square

2.2 Kinds and number of gestures

Many systems using gesture recognition technology with
accelerometers have been proposed. The system proposed
by Liu et al. recognizes 8 gestures, such as drawing a line
and a circle (recommended by Nokia laboratory), with one
3-axis accelerometer, resulting in 98.6% accuracy by suc-
cessively renewing training data[1]. The system proposed
by Holger et al. recognizes 10 daily short actions, such as
pushing a button and drinking, and achieves approximately
80% precision and recall[1]. The Georgia Tech Gesture
Toolkit[5] has been proposed as a tool to support gesture
recognition. One of its applications is gesture recognition
with a 3-axis accelerometer on the wrist and on the elbow,
and 93.3% accuracy is achieved for 10 kinds of gestures
such as grinding and sawing. In these studies, the number
of gestures to be recognized is not many and the influence
of the number and kinds of gestures has not been reported.

3 Experiment

3.1 Experimental environment

Data on 27 kinds of gestures (Table 1) that we assume
are performed when using a mobile tablet such as the iPad
were captured 10 times for each gesture from 7 male and 1
female subjects aged 21–26 years. A total of 2160 samples
were collected with 9 sensors placed on a board as shown
in Figure 2. The board was W117×H155×D16 (mm) and
weighed 200 g. The sensors used in the experiment were
WAA-006, made by Wireless-T Inc.1, in which a wireless
3-axis accelerometer and 3-axis gyroscope are installed. All
the subjects were right-handed and performed the gestures
while holding the lower right of the board with their right
hands. The sampling frequency was 50 Hz. The subjects
were instructed in how to perform the gestures by watching
the actual movements demonstrated by one of the authors
in order to reduce error due to individual interpretation.

1Wireless Technologies, Inc. http://www.wireless-t.jp
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Figure 2. Experimental board with sensors.

3.2 Preprocessing and recognition

The test subjects stood still before and after each gesture
to indicate the starting and end points of the gestures. Then,
the mean and variance over the sensor value of the gesture
were extracted as feature values. In a comparison of the re-
sultant feature values over the duration of the whole gesture
and over the first 1 second, the latter were better since the
durations of the gestures ranged from 1.2 to 2.0 seconds,
and movements around the end points added noise. There-
fore, the results of the features over the first 1 second are
shown in this paper. The collected data were manually la-
beled. Dynamic time warping (DTW)[3] is often used as
a gesture recognition algorithm since DTW measures the
similarity of two time series in detail. DTW, however, scans
all the data in a time series, which causes delay and disables
immediate recognition. Therefore, we used a support vector
machine (SVM)[4] after feature extraction in this work. In
the evaluation, recognition accuracy was measured in two
ways: intra-subject and inter-subject analysis. Intra-subject
analysis measures the averaged accuracy over eight test sub-
jects after four-fold cross-validation is conducted for each
subject. Inter-subject analysis, in contrast, conducts four-
fold cross-validation after the data for the eight subjects are
merged.

4 Results and consideration

4.1 Number and positions of sensors

Number. Recognition accuracy on average over the
gestures for each number of sensors is shown in Table 2.
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Table 2. Accuracy (mean±sd) vs. number of sensors.

Type Sensor
Number of sensors

1 2 3 4 5 6 7 8 9

Intra
Acc 0.849±0.0130 0.891±0.00614 0.902±0.00379 0.907±0.00304 0.909±0.00256 0.910±0.00236 0.910±0.00157 0.910±0.00146 0.910±N/A
Gyro 0.702±0.00983 0.737±0.0182 0.753±0.0174 0.761±0.0186 0.770±0.0188 0.778±0.0166 0.785±0.0140 0.792±0.0108 0.797±N/A
Both 0.901±0.00628 0.908±0.00298 0.912±0.00243 0.913±0.00182 0.912±0.00169 0.912±0.00161 0.911±0.00188 0.911±0.00139 0.912±N/A

Inter
Acc 0.584±0.0294 0.701±0.0259 0.747±0.0161 0.775±0.0115 0.794±0.00769 0.806±0.00554 0.815±0.00409 0.824±0.00345 0.829±N/A
Gyro 0.469±0.0168 0.521±0.0401 0.550±0.0417 0.574±0.0407 0.592±0.0387 0.609±0.0344 0.625±0.0297 0.642±0.0232 0.650±N/A
Both 0.799±0.0118 0.847±0.0114 0.874±0.00947 0.893±0.00833 0.906±0.00634 0.915±0.00489 0.924±0.00449 0.930±0.00291 0.936±N/A
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Figure 3. Degree of sensor positions in combinations where accuracy was over median.

From the results, accuracy slightly increases but this growth
is throttled as the number of sensors increases. In a com-
parison of intra-subject and inter-subject results, the intra-
subject ones are much better since the training data in-
clude only the data of the subject for testing. However,
inter-subject analysis achieves equivalent accuracy to that
of intra-subject analysis when multiple homogeneous sen-
sors are used. This means that multiple homogeneous sen-
sors can capture the diversity among the subjects while one
sensor cannot. Moreover, with regard to kinds of sensors,
a gyro is inferior to an accelerometer. Detailed discussion
on this point is in Section 4.2. The calculation cost also
increases as sensors are added. In measuring the operation
time to recognize 27 kinds of gestures with SVM, the recog-
nition of 1 gesture including feature extraction took 0.3–0.4
msec with 1 sensor and 6.7 msec with 9 accelerometers and
9 gyroscopes. The device used was an Android-powered
phone (HTC Desire; OS is Android 2.2 and CPU is Qual-
comm QSD 8250 1 GHz). Though it may lengthen if other
applications are running in the background or the CPU is
poor, such a degree of delay would not be significant in this
environment.

Position. To evaluate the positions of sensors, the ap-
pearance of sensors in the combinations where accuracy
was over the that of median was counted for one to nine
sensors. For the example of one sensor (nine potential po-
sitions), the appearance of sensors in the top four positions
is counted. If sensor 1 is the best, the count for sensor 1
is incremented. This procedure is iterated for all nine sen-
sors. A sensor that is counted frequently contributes to the
improvement in accuracy. The results are shown in Figure
3. Though there is no clear trend for the accelerometer, sen-
sors far from the holding position (corresponding with the
position of sensor 3) were frequently assigned to the top
50%. This makes it clear that sensors near the points where
shock and impact are given by the gestures are effective for
recognition. The results for gyroscope 2 show that it plays
an important role. This would be due to the rotation axes

of each gesture crossing at the point of sensor 2, and the
rotation of each gesture is sensed well at that point.

Summary. Using multiple homogeneous sensors im-
proves accuracy when training with data from multiple
users. A position further from the holding position is better
for an accelerometer. A gyro placed on the cross-point of
the axes of gyration for each gesture works well. Though
using multiple sensors would be even more accurate, realis-
tically we recommend placing accelerometers on the oppo-
site side to the holding position and placing one gyro at the
cross-point of axes of gestures, in the design of sensors in
devices.

4.2 Kinds and number of gestures

Recognition accuracies for each gesture are shown in Ta-
ble 3. The sensors used were those combinations that per-
formed best.

Kind. From the intra-subject results, the accuracies of
gestures 12 and 13 were quite low with any kind of sensor,
even though the system was trained with data for the same
subject for testing. This is because each trial for these ges-
tures is not consistent. Moreover, the accuracies of gestures
19 to 24 with an accelerometer were inferior to those of
the other gestures since these gestures involve small parallel
displacements in common that rarely appear in the accelera-
tion value. Focusing on only the gyro results, gestures 19 to
24 were not recognized well. This is because parallel dis-
placements do not appear in angular velocity. In contrast,
gestures 14 to 16, which include a shock, were recognized
well by an accelerometer compared to a gyro since these
gestures produce a large acceleration and do not produce a
large angular velocity. The inter-subject accuracy dropped
by a large margin, but the accuracies of gestures 12 and
13 were improved. It appears that the intra-subject training
data did not capture the consistency among the gestures due
to the training data being for one test subject only. On the
other hand, the inter-subject results were consistent through
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Table 3. Accuracy for each gesture.

Gestures
Intra analysis Inter analysis 9 1.000 0.932 1.000 0.897 0.545 0.949 19 0.917 0.531 0.953 0.861 0.356 0.861

Acc Gyro Both Acc Gyro Both 10 0.979 0.927 1.000 0.857 0.779 0.974 20 0.990 0.891 0.984 0.598 0.481 0.909
1 0.990 0.880 0.964 0.933 0.733 0.987 11 0.943 0.849 0.927 0.816 0.829 0.921 21 0.911 0.802 0.958 0.663 0.169 0.832
2 0.990 0.875 0.990 0.897 0.387 0.974 12 0.219 0.229 0.229 0.670 0.848 0.936 22 0.924 0.755 0.938 0.438 0.713 0.675
3 0.964 0.875 1.000 0.987 0.352 0.986 13 0.219 0.250 0.250 0.507 0.883 0.948 23 0.974 0.745 0.990 0.937 0.570 0.949
4 0.990 0.917 0.974 1.000 0.857 0.974 14 1.000 0.797 1.000 1.000 0.847 1.000 24 0.891 0.661 0.896 0.558 0.455 0.778
5 1.000 0.870 1.000 0.896 0.895 0.988 15 0.979 0.792 0.979 0.961 0.597 0.948 25 0.979 0.906 0.938 0.845 0.869 0.961
6 0.974 0.615 0.979 0.907 0.241 0.933 16 0.979 0.719 0.979 0.913 0.413 0.963 26 1.000 0.932 0.990 0.848 0.772 0.962
7 0.990 0.927 0.990 0.874 0.949 0.988 17 0.990 0.958 0.974 0.987 1.000 0.987 27 0.969 0.953 0.979 0.722 0.658 0.924
8 0.948 0.943 0.979 0.829 0.461 0.974 18 1.000 0.994 1.000 1.000 1.000 1.000 Average 0.915 0.797 0.920 0.830 0.654 0.936

Sensors used; Intra/Acc:2,5,6,7,8,9 Intra/Gyro:1,2,4,5,6,7,8,9 Intra/Both:4,5,6 Inter/Acc:1,2,3,4,6,7,8,9 Inter/Gyro:1,2,3,4,6,7,8,9 Inter/Both:1,2,3,4,5,6,7,8,9

Figure 4. Accuracy vs. number of gestures.

training with the data of seven test subjects. Especially in
the gyroscope results, the accuracies of gestures 12 and 13
were improved by a large margin since these gestures in-
volve rotation.

Number. We measured the accuracy by reducing the
number of gestures one by one starting from the gesture
whose accuracy was the lowest overall. The accuracies are
plotted in Figure 4, and excluded gestures at each step are
shown beneath the graph, according to sensor type. Specif-
ically, 26 gestures were recognized after excluding gesture
13 since gesture 13 had the lowest accuracy of the 27 ges-
tures. In this evaluation, only one sensor was used: sensor 5
for the accelerometer, sensor 2 for the gyroscope, and sen-
sor 5 for the both sensors. The accuracy reached 1.0 when
the numbers of gestures were 6, 5, and 10 for the accelerom-
eter, gyro, and both sensors, respectively. From the results
for the accelerometer, though the average accuracy for 27
gestures is 0.6+, an average accuracy of 0.9+ can be ob-
tained for as many as 16 gestures by selecting ones that are
easily recognized. Focusing on the excluded gestures of the
accelerometer and both sensors, one of two gestures that
move in the opposite direction to each other is excluded,
then the accuracy of the remaining gesture goes up. For ex-
ample, with the accelerometer, the accuracy of gesture 23,
which involves an opposite movement to gesture 24, is im-
proved from 0.785 to 0.974 after excluding gesture 24 when
the number of gestures is reduced from 25 to 24. These re-
sults indicate recognition accuracy does not simply depend
on the number of gestures.

Summary. Gestures involving parallel displacement
are rarely recognized. A gyro is not good at recognizing
gestures including a shock, such as tapping. Some ges-
tures have low reproducibility, which leads to deterioration
in recognition accuracy. These gestures should be trained

with data captured from many users. An adequately high
degree of accuracy can be achieved without excluding a lot
of gestures by selecting gestures that do not conflict with
each other.

5 Conclusion

We investigated the effects on gesture recognition accu-
racy of the number and positions of sensors, and the kinds
and number of gestures. We experimentally evaluated the
accuracies of 27 kinds of gestures measured using a board
on which nine accelerometers and nine gyroscopes were
placed. Accelerometers and gyroscopes in devices are cur-
rently placed together, but we plan to investigate more ef-
fective positions by placing these sensors separately.
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