

Design and Implementation of an Extensible
Rule Processing System for Wearable Computing

Masakazu Miyamae, Tsutomu Terada, Masahiko Tsukamoto and Shojiro Nishio
Graduate School of Information Science and Technology, Osaka University

Email: {miyamae, tsutomu, tuka, nishio}@ist.osaka-u.ac.jp

Abstract

In wearable computing environments, a user brings
and uses his/her own computer to acquire various ser-
vices wherever he/she goes. This type of computer,
which acts as a service platform for wearable comput-
ing, needs autonomy and simplicity of services, flexibil-
ity of services/devices configuration, and power saving
functions. Since most conventional wearable comput-
ing systems do not fulfill all of these requirements, we
propose A-WEAR, which is a rule-based wearable comput-
ing system. We employ an event-driven rule as a behav-
ior description language of A-WEAR to achieve autonomy
and simplicity. Furthermore, we employ a plug-in mech-
anism to achieve flexibility and power saving. Using
our system, we can easily provide and use various ser-
vices for wearable computing environments.

1. Introduction

In recent years, the downsizing of portable computers
has attracted much attention to the field of wearable com-
puting. Wearable computing is a computing style in which a
user brings and uses his/her own computer wherever he/she
goes. Wearable computing has three characteristics: (1)
Hands-free: users almost always browse information with-
out hands because they wear the computer; (2) Always on:
since the wearable computer is always powered while it is
worn, users can use the computer whenever they want; (3)
Supporting daily life: users utilize wearable computers to
support activities in their daily life.

Figure 1 shows the appearance of a wearable computer.
In the figure, the user wears a computer, a portable input
device on her waist, and a HMD (Head Mounted Display).
Since there is no restriction on users’ behavior due to the
‘Hands-free’ features, many users will wear their own com-
puter as a fashion accessory. Moreover, a wearable com-
puter keeps watch on the user’s activity and the surround-

HMD

Wearable PC

Input Device

Figure 1. A style of wearable computing

ing environment because of the features of ‘Always on’ and
‘Supporting daily life’.

Consequently, services for wearable computing will be
developed as follows:

• Many facilities provide various services for wearable
computers. For example, bookstores provide new book
information according to users’ interest, and amuse-
ment parks display waiting times of attractions by
lending out high-accuracy location-aware devices.

• A user benefits from many wearable services regard-
less of whether the user is at work or at leisure. For
example, a computer displays various information to
support business as well as a shopping list when shop-
ping.

• A user describes/customizes services such as a service
that displays a message when the user meets a specific
friend.

• A user customizes attached devices. For example, the
user may remove a HMD when listening to music and
may change old devices to new ones that are more ac-
curate.

tsutomu
Proc. of 1st Annual International Conference on Mobile and Ubiquitous Systems (MobiQuitous 2004), pp.392-400 (Aug. 2004).

We define the following four properties as requirements
for wearable systems to achieve the above service forms:

Autonomy: Services behave autonomously in response to
information of user activities, situations, and environ-
ments around the user.

Simplicity: Users can easily create/modify services.

Flexibility: The system configuration can be changed flex-
ibly by adding/deleting services and adding/swapping
devices.

Power saving: The system has a mechanism to save bat-
tery life such as an automatic power on/off manage-
ment of attached devices.

To construct a fundamental system for wearable com-
puting that provides these properties, we propose A-WEAR
(Active Wearable Engine Applying Rule-based architec-
ture). A-WEAR offers autonomy, simplicity, and service
flexibility by describing the system behavior with event-
driven rules, and the device flexibility by using a plug-
in mechanism to manage attached devices. Moreover, A-
WEAR achieves power saving by combining rules and plug-
ins to manage attached devices.

The remainder of this paper is organized as follows. We
describe related works in Section 2, and Section 3 explains
A-WEAR. Section 4 describes the design and implemen-
tation, and Section 5 shows the service examples using A-
WEAR. Section 6 evaluates the system performance, and
Section 7 presents our conclusions and future work.

2. Related Work

There has been much research on wearable systems such
as MARS[1], TOWNWEAR[7] and VizWear[3]. These sys-
tems have achieved autonomy and provide high-quality ser-
vices such as displaying virtual objects and annotations that
overlap the real world on a HMD. On the other hand, since
the services of these systems are specialized to one purpose
and the device configuration is fixed, they lack flexibility of
devices and services. They also lack simplicity and do not
have any mechanism for power saving.

There are several service platforms for wearable comput-
ing. MEX[4] constructs an application by combining mod-
ules that provide various services and extends its functions
by adding modules. NETMAN[2] is a service platform to
construct applications by collaborating with other systems
via a network. The system by Henk[5] is an event-driven
system, which handles an input from sensors as an event.
This system has power saving functions when no event oc-
curs. Context Toolkit[6] is not for wearable computing, but
it can simplify construction of application that uses context
information. In Context Toolkit, since context widgets col-
lect various information from environments and translate

Wearable Computer

Device Device

A-WEAR

ServiceServiceService

Plug-in Plug-in

OS (Device Driver)

Event-
Driven
Rules

Event-
Driven
Rules

Event-
Driven
Rules

Figure 2. Block diagram of A-WEAR

the information to an unified format, developers can con-
struct context-aware applications without concern for the
difference in sensors.

Although MEX, the system by Henk, and Context
Toolkit provide functions to describe autonomous ser-
vices, NETMAN lacks this function. Moreover, not all of
these systems can change the service configuration dur-
ing execution, and only MEX can add/delete services while
execution. Although MEX can also change devices dy-
namically, it cannot change devices that are directly
attached to the computer because devices need to com-
municate with MEX via the network. Consequently,
these systems do not have enough flexibility. The sys-
tem by Henk has a mechanism for power saving. However,
attached devices consume much power in wearable com-
puting environments because this mechanism is only
designed for the efficient use of a CPU. In addition, ser-
vices of these systems are implemented using programming
languages such as C and Java, which are not easy for gen-
eral users.

3. A-WEAR

As mentioned in Section 2, there is no wearable sys-
tem that provides all of the properties required for wear-
able systems. Consequently, we propose A-WEAR to meet
this need.

As shown in Figure 2, A-WEAR manages devices via
plug-ins for flexible device configuration, and services are
described as a set of event-driven rules to make services au-
tonomous and simple. We can configure services flexibly
by adding/deleting/modifying rules dynamically. Moreover,
A-WEAR achieves power saving functions with a combina-
tion of rules to keep watch on the system status and plug-ins
for power management of attached devices.

The rest of this section explains the event-driven rules
and the plug-in mechanism in detail.

� �
DEFINE Rule-ID

[IN List-of-belonging-groups]

[FOR Scope]

[VAR Variable-name AS Variable-type]*

WHEN Event-type [(Target-of-event)]

IF Conditions

THEN DO Actions
� �

Figure 3. Syntax of an ECA rule in A-WEAR

3.1. Service Description Language

All services are represented as a set of ECA rules in A-
WEAR. An ECA rule is a behavior description language
in an active database system, which is one of the database
technologies. An active database processes the prescribed
actions in response to an event arising inside/outside the
database[8]. Each ECA rule consists of three parts: Event,
Condition, and Action. The event part describes the event
occurring in the system, the condition part describes the
conditions for executing actions, and the action part de-
scribes the operations to be carried out. Using ECA rules,
we can describe system behaviors in an event-driven man-
ner. Moreover, since actions can generate new events, com-
plex behaviors can be achieved by chaining ECA rules.

In conventional active databases, only database oper-
ations are considered events, such as SELECT, INSERT,
DELETE, and UPDATE. Correspondingly, conventional ac-
tive databases can carry out only database operations as ac-
tions. Therefore, to describe various services for wearable
computing environments, we enhance the description capa-
bility of events and actions in an ECA rule. Moreover, we
can manage a set of rules as a group since A-WEAR can
run many services in parallel.

Figure 3 shows the syntax of an ECA rule for A-WEAR.
In the figure, Rule-ID describes the name of the ECA
rule. List-of-belonging-groups gives the name(s) of the
group(s) that the rule belongs to. Scope describes the scope
of rule execution. It is specified with ENTIRE (default) or
INTERNAL:Group-Name. ENTIRE denotes the rule be-
ing evaluated in response to all occurring events, and IN-
TERNAL denotes that the system processing the rule in
response to occurring events that are generated by rules be-
longing to Group-Name. Variable-name describes the name
of a local variable within this rule, and Variable-type spec-
ifies the type of local variable, whose designations are
I4 (32 bits integer), R8 (64 bits floating point num-
ber), and BSTR (string). Event-type describes the name of
the event that triggers this rule, and Target-of-event de-
scribes the target of event. For example, when Event-type
is Database Retrieval, we can specify a target table for re-

trieval as Target-of-event. Conditions specifies conditions
for executing the following actions. This part is de-
scribed by the sequence of <Exp 1> <Op 1> <Exp 2>
or <Op 2> <Exp 3>. Exp 1, 2, 3 describe system param-
eters (described in Subsection 3.2) or constant values, and
Op 1 can be one of ‘==’, ‘>’, ‘<’, ‘>=’, ‘<=’, and ‘!=’.
Op 2 can be either of ‘?’ (exists) or ‘!’ (not exists). Compli-
cated conditions can be described as a chain of conditions
with AND and OR operators. Actions specifies an execut-
ing operation by describing the sequence of <Act 1> or
<Ret> = <Act 2>. Act 1, 2 describes the name of an ac-
tion and its arguments, and Ret specifies the name of the
local variable used to acquire the execution result of the ac-
tion.

3.2. Plug-in Mechanism

A plug-in is an extension module for the system. In other
words, we can use new events and actions by adding plug-
ins. A-WEAR uses plug-ins not only for device manage-
ment to defuse the differences in methods for using de-
vices but also for enhancement of system functions such as
e-mail functions and multimedia functions. Since plug-ins
can be added/deleted dynamically on the system running,
A-WEAR can change its functionality and device configu-
ration dynamically (e.g. we can describe an ECA rule that
rids the GPS plug-in temporarily if the user is indoors). Ta-
ble 1 shows the functions provided by plug-ins that we have
already implemented. In the table, EVENT means events
provided by the plug-in and ACTION means provided ac-
tions. Additionally, each plug-in provides three system pa-
rameters: NEW, OLD, and CURRENT. NEW and OLD are
provided for each occurring event, and they store a snap-
shot of information after/before the event occurs. Plug-ins
provide current information as CURRNET in response to
request from services. CURRENT in Table 1 means con-
tents of CURRENT provided by the plug-in. These param-
eters can be used freely in the condition part and the action
part of ECA rules. In the following, we describe the func-
tions provided by plug-ins in Table 1.

Database Plug-in provides functions to access the user’s
database by SQL (Structured Query Language) and infor-
mation about the query is set to NEW and OLD. Moreover,
the system can refer to the contents of database by CUR-
RENT. Common Plug-in provides functions generally used
such as timer functions and loading/unloading plug-ins.
System information Plug-in monitors the status of the wear-
able computer, and it raises the SYS POWER CHANGED
event when the battery status changes. Direction Plug-in
captures a user’s direction using a motion sensor, and it
raises the ROTATE event when user’s direction changes.
Multimedia Plug-in provides a function to play multime-
dia contents and set the current status of playing contents

Database Plug-in

Type Name Content
EVENT SELECT Acquire the data

INSERT Insert the tuple
DELETE Delete the tuple
UPDATE Update the tuple

ACTION QUERY Database operation
CURRENT DB.table.attribute condition Data matched to condition

Common Plug-in

Type Name Content
EVENT CMN START System initialize

CMN TIMER Timer expires
ACTION COMM EVENT Generate specific event

CMN SET TIMER Set a timer
CMN KILL TIMER Kill a timer
CMN ADD RULE Insert rules

CMN LOAD PLUGIN Load a plug-in
CMN UNLOAD PLUGIN Unload a plug-in

CURRENT NOW.TIME Current time

System information Plug-in

Type Name Content
EVENT SYS POWER CHANGED Change of power status

SYS ADD DEVICE Addition of device
SYS REMOVE DEVICE Deletion of device

ACTION SYS STANDBY Standby the computer
SYS SET DEV STATE Enable/disable the device

CURRENT SYS.BATTERY STATUS Remaining battery
SYS.CPU USAGE CPU usage

SYS.IS IDLE User’s working status

Direction (motion sensor) Plug-in

Type Name Content
EVENT ROTATE Change of direction
ACTION SET DEFAULT Initialize

CURRENT DIR.ALPHA Alpha direction
DIR.BETA Beta direction

DIR.GAMMA Gamma direction

Multimedia Plug-in

Type Name Content
EVENT MM END Finish playing the contents
ACTION MM PLAY Play the contents

MM STOP Stop playing the contents
MM SEEK Seek the contents

CURRENT MM.IsPlaying Get the status of whether
the contents is playing

Camera Plug-in

Type Name Content
EVENT N/A N/A
ACTION CAP INIT Initialize the Camera

CAP DEINIT Release the Camera
CAP SAVE Save the picture from camera

CURRENT N/A N/A

Current Position (GPS) Plug-in

Type Name Content
EVENT MOVE Change of position
ACTION N/A N/A

CURRENT POS.LATITUDE Latitude
POS.LONGITUDE Longitude

Map View Plug-in

Type Name Content
EVENT N/A N/A
ACTION MAP SET CENTER Set current position

CURRENT MAP.LATITUDE Latitude
MAP.LONGITUDE Longitude

Network Plug-in

Type Name Content
EVENT NET RECEIVE Receive the data

NET Finish receiving the file
FILE RECEIVED
NET FILE SENT Finish sending the file

ACTION NET UNICAST SEND Send the data
NET BROADCAST Broadcast the data

SEND
NET FILE SEND Send the file

CURRENT N/A N/A

IRC Plug-in

Type Name Content
EVENT IRC RECEIVE Receive the message

IRC JOIN Join to the channel
IRC PART Leave the channel

IRC ENUMUSER Enumerate users
IRC DISCONNECTED Disconnect the connection

ACTION IRC CONNECT Connect to the server
IRC DISCONNECT Disconnect the connection

IRC SEND Send the message
IRC ENUMUSERS Enumerate users

CURRENT IRC.IsConnected Connection status

E-Mail Plug-in

Type Name Content
EVENT MAIL RECEIVE Receive the e-mail

MAIL SEND Send the e-mail
ACTION MAIL INIT Initialize the e-mail account

MAIL CHECK Check new e-mails
MAIL SEND Send the e-mail

CURRENT N/A N/A

Jog Dial Remote Controller Plug-in

Type Name Content
EVENT JOG ROLLUP Roll up the jog dial

JOG ROLLDOWN Roll down the jog dial
JOG BUTTONDOWN Push down the jog dial

JOG BUTTONUP Push up the jog dial
ACTION JOG SET DISPLAY Set the content of the display

CURRENT N/A N/A

Table 1. Details of plug-ins

to CURRENT. Camera Plug-in displays captured videos
by the CAP INIT action and saves captured images by the
CAP SAVE action. Current Position Plug-in tracks a user’s
position using GPS, and it raises the MOVE event when the
user’s position changes approximately 1.5 meters (this pa-
rameter can be changed in ECA rules). Latitude and lon-
gitude are provided as NEW and OLD. We can construct
location-based services by using this plug-in. Map View
Plug-in displays a map by the MAP SET CENTER action.
Network Plug-in provides a function to send/receive data
to/from other hosts via Internet. IRC Plug-in provides a

function to send/receive message using the the IRC (Inter-
net Relay Chat) protocol. E-Mail Plug-in provides a func-
tion to send/receive e-mail using the POP3 (Post Office Pro-
tocol version 3) and the SMTP (Simple Mail Transfer Pro-
tocol). Jog Remote Controller Plug-in provides a function
to control the Jog Remote Controller.

Rule Engine

Plug-ins

Plug-in Manager

Rule
Manager

Rule
Processor

Insert rules Function Call

Reference

Action
Processor

Event
Generator

Event NotificationFunction Call

Notification

ECA Rule
Base

Current-data
Manager

Data ProvisionData Request

Figure 4. System structure of A-WEAR

4. Design and Implementation

4.1. System Design

Figure 4 shows the system structure of A-WEAR. Rule
Engine is the core module of A-WEAR, and it consists
of Rule Manager, Plug-in Manager, and Rule Processor.
Rule Manager manages ECA rules. When new rules ar-
rive, it analyses these rules, converts to the intermediate
format, and stores them in ECA Rule Base. Plug-in Man-
ager receives all requests for plug-ins and dispatches them
to the appropriate plug-in. If a plug-in wants to notify an
event to Rule Engine, Plug-in Manager receives the notifi-
cation and sends the information to Rule Processor. When
Rule Processor receives the notification of an event gener-
ated by a plug-in, it retrieves rules suited for this event from
ECA Rule Base, evaluates the conditions of retrieved rules,
and requests executing actions to plug-ins via Plug-in Man-
ager. Rule Processor also requests plug-ins for getting CUR-
RENT if necessary.

A plug-in consists of Action Processor, Current-data
Manager and Event Generator. Action Processor executes
actions in response to requests from Rule Engine. Current
data Manager manages CURRENT data and provides data
in response to requests from Rule Engine. Event Genera-
tor notifies events to Rule Engine. It also sets the contents
of NEW and OLD.

4.2. Implementation

We implemented the prototype of A-WEAR and several
plug-ins using Microsoft Visual C++ .NET 2003 Enterprise
Architect on SONY PCG-C1MZX. We can use many pro-
gramming languages such as Microsoft Visual Basic, Vi-
sual C++, and C# for implementing plug-ins because they
are implemented as COM (Component Object Model) ob-
jects. Figure 5 shows a snapshot of using the building infor-
mation service described in Figure 6. The user equips Xy-

GPS
Receiver

HMD

Magnetic
Sensor

Pointing
Device

Wearable
Computer

Figure 5. A snapshot of using the prototype
system

� �
DEFINE FIND-BUILDING
WHEN MOVE
THEN DO MAP_SET_CENTER(NEW.LATITUDE,NEW.LONGITUDE)

DO QUERY (’
SELECT * FROM GEODATA WHERE (
ABS (%NEW.LATITUDE%-X) < 0.005 AND
ABS (%NEW.LONGITUDE%-Y) < 0.005) ’)

DEFINE DISPLAY-WEBPAGE
WHEN SELECT (GEODATA)
IF ?MAP.EXIST (%POS.X%;%POS.Y%;%NEW.X%;%NEW.Y%;

%DIR.ALPHA NORTH%;100.0;20.0)
THEN DO BROWSER OPEN (NEW.URL)

� �
Figure 6. An example of ECA rules

bernaut MA-V as a wearable computer, MicroOptical CO-3
as a HMD, I-O Data CFGPS as a GPS device, NEC-tokin
MDP-A3U7 as a geomagnetic sensor, and a portable mouse
as an input device.

5. Service Examples

In this section, we describe the service examples of A-
WEAR. First, we show the building information service to
show simplicity of A-WEAR service. Next, we show the in-
formation delivery service to show the function for the dy-
namic changing of configuration of rules and plug-ins. Fi-
nally, we show other service examples in practical use.

5.1. Building Information Service

Figure 6 shows an example of ECA rules for a building
information service that displays web pages of the build-
ing in front of the user. This service consists of two rules.
FIND-BUILDING rule searches the building near the user’s
current position when the MOVE event occurs. DISPLAY-
WEBPAGE rule extracts the buildings in the direction of
the user from the search results and displays the web pages
of the extracted buildings when FIND-BUILDING performs
the data retrieval.

� �
DEFINE ADD-RULE
WHEN NET END FILE RECEIVE
THEN DO CMN ADD RULE (NEW.FILE)

DEFINE ENUM-DISABLING-DEVICE IN EnumDeviceGroup
WHEN SYS ADD DEVICE
THEN DO QUERY (’SELECT * FROM DeviceTable

WHERE TYPE = %NEW.TYPE% AND DISABLED = 0’)
DO QUERY (’INSERT INTO DeviceTable (NAME, TYPE,
DISABLED) VALUES (%NEW.NAME%, %NEW.TYPE%, 0)’)

DEFINE ENUM-ENABLING-DEVICE IN EnumDeviceGroup
WHEN SYS REMOVE DEVICE
THEN DO QUERY (’SELECT * FROM DeviceTable

WHERE TYPE = %NEW.TYPE% AND DISABLED = 1’)
DO QUERY (’DELETE * FROM DeviceTable

WHERE NAME = %NEW.NAME%’)

DEFINE SET-DEVICE-STATE
FOR INTERNAL:EnumDeviceGroup

WHEN SELECT (DeviceTable)
THEN DO SYS SET DEV STATE (NEW.NAME, #1 -
NEW.DISABLED#)

DO QUERY (’UPDATE DeviceTable SET DISABLED =
#1 - NEW.DISABLED# WHERE NAME = %NEW.NAME%’)

DEFINE DISPLAY-MESSAGE
WHEN NOTIFY MESSAGE
THEN DO CMN DISPLAY MESSAGE (5, NEW.MESSAGE)

� �
Figure 7. Initial rules in the system

5.2. Information Delivery Service

We describe an information delivery service for
an amusement park as an example of A-WEAR ser-
vices. A user visits an amusement park with his wearable
computer and borrows an infrared sensor when he en-
ters the park. The park disseminates a plug-in for infrared
sensor, rules for navigation, and information about at-
tractions. There are infrared transmitters around the park,
and the use can get highly detailed location informa-
tion by using the infrared sensor. Based on this informa-
tion, the system provides information about attractions near
him.

When the computer uses an infrared sensor in this ser-
vice, it does not need other location-aware devices. There-
fore, it disables these devices to improve power consump-
tion.

All of these processes are performed by ECA rules.
These rules can be classified into initial rules and rules pro-
vided in the amusement park:

• Initial rules in the system
Figure 7 shows the initial rules in the system.

ADD-RULE rule stores the received rules via the net-
work automatically. When a device is attached to the
wearable computer, ENUM-DISABLING-DEVICE
rule retrieves the devices of the same type as the at-
tached device and records the device information
to the database. Conversely, when a device is re-

� �
DEFINE REQUEST-PLUGIN IN AmusementParkGroup
WHEN CMN ADD RULE (AmusementPark.eca)
THEN DO NET UNICAST SEND (’www.osaka-u.ac.jp:

GET PLUGIN;FILE:RF SENSOR.DLL’)

DEFINE LOAD-PLUGIN IN AmusementParkGroup
WHEN NET END FILE RECEIVE
IF NEW.COMMAND == ’PLUGIN’

AND NEW.FROM == ’www.osaka-u.ac.jp’
THEN DO CMN LOAD PLUGIN (NEW.FILE)

DEFINE SAVE-LOCATION-INFO IN AmusementParkGroup
WHEN NET RECEIVE
IF NEW.COMMAND == ’LOCATION’

AND NEW.FROM == ’www.osaka-u.ac.jp’
THEN DO QUERY (’INSERT INTO AmusementParkTable

(X, Y, MESSAGE) VALUES (%NEW.X%,
%NEW.Y%, %NEW.MESSAGE%)’)

DEFINE SEARCH-LOCATION-INFO IN AmusementParkGroup
FOR INTERNAL:AmusementParkGroup

WHEN MOVE
THEN DO QUERY (’SELECT * FROM AmusementParkTable

WHERE %NEW.X% - 10 < X AND X < %NEW.X% + 10
AND %NEW.Y% - 10 < Y AND Y < %NEW.Y% + 10’)

DEFINE NOTIFY-USER IN AmusementParkGroup
WHEN SELECT (AmusementParkTable)
THEN DO NOTIFY MESSAGE (’MESSAGE’, NEW.MESSAGE)

DEFINE SERVICE-TERM IN AmusementParkGroup
WHEN SYS REMOVE DEVICE
IF NEW.NAME == ’RF SENSOR’
THEN DO CMN UNLOAD PLUGIN (’RF SENSOR.DLL’)

DO CMN REMOVE RULE (’AmusementParkGroup’)

� �
Figure 8. Rules provided in the amusement
park

moved, ENUM-ENABLING-DEVICE rule retrieves
the devices of same type as the removed device.
SET-DEVICE-STATE rule is activated when at-
tached devices are searched from the database, and it
enables/disables these devices according to the con-
tent of the database. DISPLAY-MESSAGE rule dis-
plays messages for five seconds when other rules
request notification of a message to the user.

• Rules provided in the amusement park
Figure 8 show the rules provided in the amusement

park. REQUEST-PLUGIN rule sends the request for
the infrared sensor plug-in to the server when this
rule is stored in the system. The infrared sensor plug-
in receives the information via the infrared transmit-
ters, calculates the user’s location, and raises a MOVE
event. LOAD-PLUGIN rule installs the plug-in to the
system when it receives a plug-in from the server.
SAVE-LOCATION-INFO rule records the information
to the database when the system receives the infor-
mation about attractions. SEARCH-LOCATION-INFO
rule retrieves the information of attractions within 10
meters from the user, and NOTIFY-USER rule notifies

Figure 9. Pit crews using the VIBRaSS

the retrieved information to the user. SERVICE-TERM
rule unloads the infrared sensor plug-in and removes
rules for the amusement park when the user removes
the infrared sensor.

In this service, NOTIFY MESSAGE action chains the
DISPLAY-MESSAGE rule to display a message. This rule is
for users wearing a HMD, because it displays a message on
the HMD. If the user does not want to use any HMD, he can
remove the HMD and change CMN DISPLAY MESSAGE
to an action for reading out the contents because A-WEAR
can change the service configuration dynamically.

In our system, since rules disseminated via the network
can be added to the system automatically, we should fil-
ter received data to improve the security of A-WEAR. We
think that it can be realized by attaching a tag that represents
information on the sender and service operations. As a re-
sult, users can flexibly describe ECA rules for filtering re-
ceived services by a data receiving event, tag checking con-
ditions, and rule storing actions.

5.3. Other Applications

We have implemented many wearable applications for
A-WEAR in practical use. Here, we introduce two of them.

The first application is VIBRaSS (VIsual Bike Race Sup-
port System), which helps the team managers and pit crews
to show various information dynamically in a motorbike

Figure 10. MCSS used in WPC EXPO 2003

Device Type Device Name/Spec
Wearable CASIO FIVA MPC-216XL
computer (Max. power consumption 45W)

CPU Transmeta Crusoe
TM5600 (600MHz)

GPS I-O data CFGPS
Geomagnetism sensor NEC-tokin MDP-A3U7
Wireless LAN adapter Melco WLI-PCM-L11

Table 2. Specs of devices for evaluation

race. This application shows the status of the race such
as current position, rivals’ positions, remaining fuel, and
expected pit-in-time calculated from the fuel consumption
and lap times. Moreover, it notifies various events such as
the change of current position. This application consists of
approximately ten rules, and we use several plug-ins such
as IRC plug-in, Network plug-in, Multimedia plug-in, and
Race-Specific plug-in. This application has actually been
used by two teams in the Suzuka 8 Hours World Endurance
Championship Race 2003, which is a famous international
motorbike race held in Japan. Figure 9 shows a screen shot
of the application and photographs of pit crew members us-
ing our system.

The second application is MCSS (Master of Ceremonies
Support System), which helps the MC to facilitate his/her
work. Using this application, since the director can show
scripts and indications on the MC’s display, the MC does
not need to memorize all of the lines while on stage. This
application consists of approximately fifteen rules, and we
use IRC plug-in and WWW Browser plug-in to send mes-
sages via a wireless network. This application has been used
at the main stage in WPC EXPO 2003, which is the premier
exhibition of IT products in Asia. Figure 10 shows a snap-
shot of two MCs using our system in the expo.

6. Evaluation

In this section, we evaluate the effectiveness of the se-
lective use of devices, which is one of the key features of

0

1000

2000

3000

4000

5000

6000

7000

8000

8 10 12 14 16 18 20

Time

P
o
w
e
r
C
o
n
s
u
m
p
t
io
n
 (
m
A
h
)

Use Required Devices Only

Use All Devices

Figure 11. Effect of selective use

A-WEAR.
We assume the following scenario as an example of

daily-life with a wearable computer and examine its power
consumption.

• A user goes to the office by train for an hour from
8:00 a.m. At this time, his wearable computer plays
the user’s favorite songs automatically. The computer
disables the private rules and switches to business rules
automatically at 9:00 a.m., which is the start time of the
user’s job. He is a sales representative, and the com-
puter automatically collects information on the cus-
tomers he plans to visit today via a wireless LAN un-
til 10:00 a.m. He takes 30 minutes to get to a cus-
tomer’s location and he does business for 30 minutes.
The user repeats this procedure from 10:00 a.m. to
12:00 a.m. and from 1:00 p.m. to 5:00 p.m. While the
user does business, the computer turns on the GPS de-
vice and navigates to the destination when it detects
his movement by the acceleration sensor. If the sys-
tem detects arrival at the destination, it displays the
sales information to help him. At 12:00 a.m., he re-
quests for navigation to a restaurant for lunch. From
5:00 p.m., the system navigates him to help with his
shopping. While shopping, the computer provides the
building information service described in Section 3 by
using GPS, geomagnetism sensor, and wireless LAN.
The user takes an hour to return to his home from 7:00
p.m.

We evaluated the battery consumption with/without the
mechanism of selective use of devices according to the
above scenario. We performed the evaluation with the de-
vices shown in Table 2 and several 2000 mAh batteries.
Figure 11 shows the results of the evaluation. The figure
shows that the selective use of devices saves battery life by
1000m Ah (12%) in one day. In this evaluation, we used
three devices for the target of selective use. Since gener-
ally more devices are used in wearable computing environ-

ments, the advantage of the plug-in mechanism will become
even clearer.

7. Conclusion

In this paper, we proposed A-WEAR, which is an ex-
tensible rule processing system for wearable computing. A-
WEAR uses ECA rules to describe autonomous services
simply, and it uses plug-ins to make device configuration
flexibly. We can easily construct and customize applications
for wearable computing environments using A-WEAR. We
also showed that A-WEAR significantly reduced power
consumption.

Although we used Microsoft Windows for the platform
of the prototype system in our research, our approach is in-
dependent of the operating systems used. In the future, we
aim to implement an OS that can execute ECA rules di-
rectly. Moreover, we will propose strong security mecha-
nisms. A-WEAR can receive and store ECA rules via a net-
work. Although the system can filter undesired rules by us-
ing tags, the tags may be interpolated by the sender. There-
fore, it is desirable to filter rules by referring to the contents
of the received rules.

Acknowledgments

This research was supported in part by “The 21st Cen-
tury Center of Excellence Program”, Grant-in-Aids for Sci-
entific Research number 13780331 from the Japan Soci-
ety for the Promotion of Science and Special Coordination
Funds for promoting Science and Technology of the Min-
istry of Education, Culture, Sports, Science and Technol-
ogy, Japan.

References

[1] T. Hollerer, S. Feiner, T. Terauchi, G. Rashid, and D. Hall-
away. Exploring mars: Developing indoor and outdoor user
interfaces to a mobile augmented reality system. Computers
and Graphics, 23(6):779–785, 1999.

[2] G. Kortuem, M. Bauer, and Z. Segall. Netman: The design of
a collaborative wearable computer system. Mobile Networks
and Applications, 4(1):49–58, 1999.

[3] T. Kurata, T. Okuma, M. Kourogi, T. Kato, and K. Sakaue.
Vizwear: Toward human-centered interaction through wear-
able vision and visualization. In PCM2001 in Beijing, China,
pages 40–47, 2001.

[4] J. Lehikoinen, J. Holopainen, M. Salimaa, and A. Aldro-
Vandi. Mex: A distributed software architecture for wearable
computers. In ISWC ’99 (Third Int. Symp. on Wearable Com-
puters), pages 52–57, 1999.

[5] H. Muller and C. Randell. An event-driven sensor architec-
ture for low power wearables. In ICSE 2000, Workshop on
Software Engineering for Wearable and Pervasive Comput-
ing, pages 39–41. ACM/IEEE, 2000.

[6] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit:
Aiding the development of context-enabled applications. In
CHI ’99 (The 1999 Conference on Human Factors in Com-
puting Systems), pages 434–441, 1999.

[7] K. Satoh, K. Hara, M. Anabuki, H.Yamamoto, and H.Tamura.
Townwear: An outdoor wearable mr system with high-
precision registration. In 2nd Int. Symp. on Mixed Reality,
pages 210–211, 2001.

[8] J. Widom and S. Ceri. ACTIVE DATABASE SYSTEMS. Mor-
gan Kaufmann Publishers Inc, 1996.

	mobi.pdf
	mobi2.pdf
	200408_MobiQuitous_miyamae.pdf

