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Abstract

As a result of the rapid development of wireless
communications and computer hardware technologies,
we can mow access various information anywhere us-
ing handy terminals. To support the integrative use
of data held by mobile hosts in this environment, we
proposed the AMDS (Active Mobile Database System)
as the kernel system for data management. The be-
havior definition language of this system, ECA (Event-
Condition-Action) rules, has a high description capa-
bility that enables users to define complicated behav-
ior. However, the execution of the ECA rules may fall
into a chain of unexpected behaviors. In general, a
directed graph, called a trigger graph, is used for de-
tecting chains. Since the trigger graph highly depends
on network topology, it is difficult to employ the trig-
ger graph in a mobile computing environment. In this
paper, we propose a method that reconstructs the trig-
ger graph dynamically to adapt to changes in network
topology. Using this mechanism, mobile applications
with ECA rules can be used more safely.

1 Introduction

Now, we can access information anywhere using
handy terminals with wireless communication capa-
bilities. We call such an environment as the mobile
computing environment. In this environment, the fol-
lowing services are required:

e Company employees have a handy terminal which
includes their schedule and work progress. A
manager integrates the schedule data on handy
terminals under his/her command, and allocates
new assignments to the appropriate employee.

When a visitor enters a museum, he/she walks
around with a handy terminal that automatically
displays information about the nearest showpiece.

Such services require a function that collects data
from mobile hosts, and this function must be available
on any mobile host. Therefore, it needs a common
platform to manage the connection to/disconnection
from a network and data collection from other
hosts automatically. Highly motivated by such re-
quirements, we proposed the AMDS (Active Mobile
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Database System)[6]. AMDS is an enhanced ac-
tive database that can handle various events in mo-
bile computing environments easily. In AMDS, sys-
tem behaviors are described in the ECA rule (Event-
Condition-Action rule). While a chain-execution of
ECA rules achieves complicated behaviors, the execu-
tion of ECA rules may fall into unexpected behaviors,
such as an infinite loop. Therefore, it is necessary to
observe the execution of the ECA rules to avoid ab-
normal behavior. Consequently, we propose an infinite
loop detection mechanism in the mobile computing en-
vironments. Our method can detect infinite loops of
the ECA rules by a little additional network traffic be-
cause it exchanges only necessary information among
hosts.

The remainder of this paper is organized as follows.
Section 2 outlines AMDS, and Section 3 explains the
infinite loop of an active database and methods for
solving this problem. Section 4 presents our method
for detecting the infinite loop. Section 5 illustrates
the implementation of our method, and Section 6 ex-
plains considerations of our work. Section 7 presents
conclusions and our plans for future study.

2 AMDS

AMDS is an enhanced active database system. An
active database is a database system that processes
prescribed actions in response to the occurrence of
an event generated inside/outside of the database[5].
The behaviors of an active database are described by
ECA rules. Each ECA rule consists of three parts: the
event, the condition, and the action. The event part
describes an event occuring in the system. The con-
dition part describes the conditions for executing the
following action. The action part describes the opera-
tions to be carried out when the event occurs and the
condition part is satisfied.

In conventional active databases, only database
operations are considered as events. Further, ac-
tive databases can carry out actions only concerning
database operations. In AMDS, the description ca-
pability of the ECA rule is enhanced to fulfill various
requirements in mobile computing environments.

2.1 ECA Rule
Figure 1 shows the syntax of the ECA rule in
AMDS. In the figure, ‘Definition of variables’ defines
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CREATE RULE Rule name ON Event name
[ Definition of variables ]
[ WHERE Conditions ]
THEN DO Actions

Figure 1: Syntax of ECA rules

Table 1: Events provided by AMDS

Name Content
CONNECT MH (Mobile Host) connection to a cell
DISCONNECT MH disconnection from a cell
SELECT Data retrieve
INSERT Data insert
DELETE Data delete
UPDATE Data update
RECEIVE Receiving a data packet
TIMER Firing a timer

Table 2: Actions provided by AMDS

Content
Database operation
Send a data packet
Store an ECA rule

Delete ECA rules
Activate ECA rules
Deactivate ECA rules
Set a new timer
Remove a timer

Name
QUERY ([expression])
SEND([opponent], [expression])
INSERT_ECA ([description])
DELETE_ECA([identification])
ENABLE_ECA ([identification])
DISABLE_ECA([identification])
SET_TIMER([condition])
KILL_TIMER([identification])

Table 3: Contents of NEW data and OLD data

Event NEW OLD
CONNECT MH information -
DISCONNECT — MH information
SELECT Retrieved data -
INSERT Inserted data -
DELETE - Deleted data
UPDATE Data after update | Data before update
TIMER Timer ID -
RECEIVE Received data -

the local variables used in this rule. ‘Conditions’ spec-
ifies the condition for executing the following actions.
In ‘Action’, the operations to be carried out are de-
scribed. Tables 1 and 2 show the events and the ac-
tions provided by the AMDS. Moreover, the AMDS
provides two system parameters, NEW data and OLD
data, for each event. The system sets the information
shown in Table 3 to these parameters when the event
occurs. These parameters can be used anywhere in an
ECA rule.

Figure 2 shows an example of the ECA rules for
collecting schedule information from mobile hosts.
RULE! for a mobile host server sends a request of
schedule data to mobile hosts when the hosts connect
to the cell of the mobile host server. RULE2 for the
mobile hosts replies with the schedule data on the lo-
cal database to the mobile host server. When a mobile
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CREATE RULE RULE1 on CONNECT
THEN DO
SEND( new.from, "Request™ );

CREATE RULE RULE2 on RECEIVE
WHERE new.header = ‘Request”’
THEN DO data = QUERY (”select s.* from Schedule s”);
SEND( new.from, "result™, data );

Figure 2: An example of ECA rules

host connects to a mobile host server, RULE1 is acti-
vated. Then, the action of RULEL1 triggers RULE2. In
this way, it is possible to describe complex behaviors
by chaining the execution of the ECA rules.

3 Detection of Nontermination

In this section, we show an example of an infinite
loop by a chain of rules execution. Then, we explain
the detection techniques for infinite loops, the problem
of these techniques, and our approach to solve these
problems.

3.1 Infinite Loop of ECA Rules Execution

Since an event can be triggered by executing the
action of another ECA rule, two or more rules can be
executed in a chain. While this characteristic enables
complex behaviors, it also brings about unexpected
behaviors such as an infinite loop.

Figure 3 and Table 4 show an example of such un-
expected behavior. R1 and R2 are rules stored in a
mobile host server, and R3 is a rule stored in a mo-
bile host. When the mobile host connects to the cell
of the mobile host server, R1 is triggered and sends a
query to the mobile host. Since the query triggers R3
on the mobile host, R3 sends a query to the mobile
host server. This query triggers R2 and R2 triggers
R3 again. As a result, an infinite loop is generated
between R2 and R3. It is difficult to detect an infinite
loop by checking the ECA rules individually. More-
over, infinite loops can be created by various factors
such as the migration of hosts and a change of the rule
set in a host. Therefore, the system must provide a
mechanism to investigate the possibility of an infinite
loop beforehand, and to detect an infinite loop when
it actually occurs.

3.2 Detection Methods
Generally, the following two types of methods are
used for detecting an infinite loop:

e Run-time detection: The system detects an
infinite loop while the system is running.

e Static detection: The system detects an infi-
nite loop logically using a digraph called a trigger
graph.

In run-time detection, the system detects an infinite
loop using a chain counter and timestamps of rule exe-
cution. Therefore, the system cannot use this method
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Mobile Host Server

Figure 3: An example of an infinite loop

Table 4. Contents of R1-R3

Rule E C A

R1 MH Connection - ID Request
R2 Receive ID Request? ID Reply
R3 Receive - ID Request

when we do not want to stop the system or when we
want to check the safety beforehand.

In a trigger graph used for static detection, the node
of the graph represents one rule. Two rules, r1 and
r2, are connected by a directed edge from r1 to r2 if
the action of r1 triggers the event of r2. The absence
of cycles in the graph guarantees the termination of
the set of rules[1]. The trigger graph is used widely as
a dependable technique for detecting an infinite loop.

However, in mobile computing environments, the
network topology changes dynamically with the mi-
gration of mobile hosts. Moreover, since mobile hosts
exchange ECA rules frequently in the AMDS, the sys-
tem must consider the correlation of the ECA rules be-
tween multiple hosts. Thus, the system must know all
the ECA rules on every host in order to construct the
trigger graph in mobile computing environments. In
addition, since changes of the network topology cause
changes of the trigger graph topology, the system must
construct trigger graphs in all cases that each mobile
host connects to every mobile host server. In the real
world, it is difficult to predict what rules the connect-
ing mobile host has. Additionally, it is not realistic to
examine all topologies of the trigger graph from the
viewpoint of computational complexity.

4 Dynamic Detection

In this section, we describe the dynamic method
we propose. In the dynamic method, the system ex-
changes a part of the trigger-graph information in re-
sponse to a change in the network topology. This
method detects an infinite loop before the loop ac-
tually occurs. Moreover, this method can react to the
connection of a new mobile host with a little additional
network traffic, because hosts exchange only the neces-
sary information concerning the change in the network
topology.

Hereinafter, we explain the construction algorithm
of the trigger graph in our method. Next, we describe
how the system detects an infinite loop, and show an
example of this procedure.

4.1 Construction of Trigger Graph

A trigger graph is constructed by the following
steps:
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1. Creation of the trigger graph and detection of in-
finite loops on the local host

2. RS-path extraction
3. RS-path degeneracy
Transmission of RS-path

5. Processing RS-path on other hosts

First, each host creates the trigger graph of the
ECA rules and detects infinite loops on the local host.
If no infinite loop is detected in the first step, the
host sends to other hosts a part of the trigger graph
that consists of the rules with the possibility of causing
chain-execution between hosts. We call this sub-graph
the RS(Receive-Send)-path. When another host re-
ceives the RS-path, the above procedure is performed
again including the received RS-path. This trigger-
graph creation algorithm is performed in the case of
the initiation of the system, the change of network
topology, and the chage of rule set.

Each step is explained in detail in the following sec-
tion.

4.1.1 Creation of Local Trigger Graph

The trigger graph of the local host is constructed by
the following steps:

1. Extracting a set of triggering paths
For all rules in the local host, the system extracts
triggering paths from one rule to another rule.
Then, the system extracts chaining paths, which
are the linked paths triggered in a chain. If there
is no loop in the triggering-path set, the system
ends the algorithm.

2. Evaluating the condition of the loop path
If there are loops in the rule set, the system eval-
uates the condition of the rules in each loop for
judging whether they become an infinite loop in
reality.

2-1. Rewriting values of NEW/OLD data

The system rewrites NEW data and OLD data

in each condition of the rules by converting

‘NEW’ or ‘OLD’ to an actual table name or

value. This operation gives the system some in-

formation for making a decision. For example,
the system can know whether multiple condi-
tions access the same table.

Merge of conditions

The system links up the conditions of the rules
in a loop path with AND operator. When link-
ing up a condition, the system checks the action
of the rule. If the action accesses a table, con-
ditions concerning the table are removed from
the linked condition. This is because these con-
ditions may be invalidated by the action.

2-2.
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Figure 4: An example of chains between different hosts

3-3.  Evaluation of the merged condition
If there is no contradiction on the merged con-
dition, the system regards the loop as an infinite

loop. Otherwise, the loop is disregarded.

4.1.2 RS-path Extraction

As illustrated in Figure 4, the chain execution of rules
between multiple hosts is caused only by pairs of the
SEND action on a host and the RECEIVE event in
another host. Additionally, the chaining path from
the rule that has the RECEIVE event to the rule that
has the SEND action in the same host is required for
composing an infinite loop between multiple hosts. We
name the chaining path the RS(Receive-Send)-path.
Since a host with RS-paths may be a part of infinite
loops between multiple hosts, the host sends RS-paths
to other concerned hosts for the detection of such in-
finite loops.

The RS-path extracting procedure is as follows.
Firstly, the system extracts a path that starts the RE-
CEIVE event. Next, from among the chaining-paths
started from the path, the system selects paths ended
by the SEND action as the RS-paths.

4.1.3 RS-path Degeneracy

Since the RS-path may be still retransmitted to other
hosts, the network traffic may increase seriously when
transmitting the RS-path without any compression.
Thus, unnecessary information is reduced from the
RS-path according to the following procedures:

1. Condition degeneracy in the RS-path
Around the rules in the RS-path, the system uses
only the part of the SEND action of the last rule
and the RECEIVE event of the first rule. Thus,
the RS-path can be reduced into one rule. The
reduced rule has the event of the first rule and
the action of the last rule in the RS-path. The
condition of the reduced rule is the merged con-
dition made with a similar procedure to the one
described in Section 4.1.2. Moreover, the condi-
tions concerning the local database are removed
because such information has no relation to other
hosts.
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2. Merge of the multiple RS-path
The system selects a merged-RS-path that has
the same opponent address of the SEND action.
Then, it integrates these RS-paths by linking the
conditions with the OR operator.

4.1.4 Transmission of the RS-path

The generated RS-paths are transmitted to either of
the following destination hosts:

e The SEND action of the RS-path specifies
the destination address

When the destination address is fixed, the sys-
tem sends the RS-path only to destination hosts
because there is no possibility that the chain exe-
cution with the RS-path is propagated except at
these destinations.

e The SEND action has no destination

If the SEND action does not specify the destina-
tion address, this action sends the RS-paths to all
hosts within the cell of the sender.

4.2 Recovery from Infinite Loop

If our method does not detect any infinite loops,
the system guarantees the safety of the rule set. On
the other hand, even if our method detects an infinite
loop, the system does not always guarantee the abnor-
mal behaviors. Therefore, if our method detects infi-
nite loops, the system should provide flexible service
methods. sFrom the above observation, our method
provides the following three methods to deal with the
detection of an infinite loop:

e Notification to users

This method prompts users to select the
stop/continuance of the application when the sys-
tem detects infinite loops. If the user selects con-
tinuance, the system regards the triggering paths
that consist of infinite loops as the dangerous
paths. When the ECA rules in the dangerous
paths are triggered, the system continues logging
triggered events and rules.

¢ Removing the cause of the infinite loop

This method avoids the infinite loop by separat-
ing the rule or the host that causes the infinite
loop. For example, if the connection of a mobile
host causes an infinite loop, the mobile host server
refuses the connection of the mobile host.

e Generation of the ERROR event

When the infinite loop is detected, the system
generates the ERROR event that has the NEW
data concerning the status of the infinite loop.
Flexible error handling is achieved by describing
ECA rules that handle the ERROR event.
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5 Implementation

We implemented the proposed method on the
AMDS. The system structure of the AMDS includ-
ing the mechanism is illustrated in Figure 5. We
implemented the Trigger PathManagementPart in
addition to the modules of the previous AMDS.
The Trigger PathManagementPart creates trigger
graphs and RS-paths based on the contents of the local
Database and EC ARuleBase.

6 Consideration

6.1 Verification of Detectivity

Here, we define that the system is Safe if there is
no infinite loop of the ECA rules. Then, the following
theorem is self-evident.

Theorem 1. For any set of ECA rules, if there is no
loop that can be reached from a given event, the set
of rules is Safe.

Next, we show the following four lemmas.
Lemma 1. A loop across multiple hosts is a combi-
nation of two or more RS-paths.

Proof. Referring to the syntax of the ECA rule,
only the SEND action can trigger an event on other
hosts. Similarly, only the RECEIVE event can be trig-
gered by other hosts. If the triggering-paths make a
loop, the sub-path of each host starts by the rule with
the RECEIVE event and ends by the rule with the
SEND action. Moreover, a single RS-path cannot be
a loop. O
Lemma 2. If our algorithm starts based on either of
the rules in a certain RS-path, the loop including the
RS-path is detected.

Proof. The end of the RS-path is the SEND ac-
tion. Since the RS-path information is transmitted
to the opponent of the SEND action, the informa-
tion is transmitted as long as the triggering-path exists
between hosts. For the above reasons and lemma 1,
lemma 2 is proved. O
Lemma 3. Every RS-path is evaluated by our algo-
rithm when the RS-path can be organized.

Proof. A set of triggering-path changes when a
set of rules changes in the local host or the network
topology changes by the migration of mobile hosts.
The detection algorithm starts in each case. O
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Lemma 4. The degeneracy of the RS-path does not
cause mistakes in loop detection.

Proof. Because the degeneracy of the RS-path
does not change the connection status of the rules in
the RS-path, it does affect the loop detection. O

Then, the following theorem is proved.

Theorem 2. If the proposed algorithm does not de-
tect the loop, the set of rules is Safe.

Proof. From Theorem 1 and the four lemmas, in-
finite loops within the local host are detected by the
trigger graph, and infinite loops across multiple hosts
are detected by the RS-path. O

From Theorem 2, the system guarantees the safety
of rules when our algorithm does not detect the infinite
loop. However, we must remember, even if our method
detects an infinite loop, the system does not always
guarantee against abnormal behaviors of the rule set.

6.2 Evaluation

In this section, we evaluate the additional net-
work traffic caused by using our method. The eval-
uation uses an application for an amusement park on
the AMDS simulator. This application automatically
transmits information about the waiting time of each
facility and suggests routes when the users approach
each facility. Moreover, users can generate a query to
get the information voluntarily. The number of ECA
rules for this application is eight in a mobile host and
one dozen in a mobile host server. There are six mo-
bile host servers as facilities. We evaluate the amount
of network traffic by changing the number of mobile
hosts that existed at the same time. We evaluate our
method by comparing it with two other methods, the
Conventional method and the Non-Merge method.
The former method transmits the information of the
trigger-graph to all hosts. The latter transmits the
RS-path the same way as the proposed method. How-
ever, the latter method does not use the degeneracy
of the RS-path.

Mobile hosts are allocated randomly on the 500*500
square field, and each host can move to the neighbor
area with each step. Each mobile host aims to reach
a certain mobile host server. Then, if the host reaches
the opponent server, the host aims to reach another
server after some rest. Under such conditions, we per-
formed the simulation in 100,000 steps.

Figure 6 shows the total amount of traffic by chang-
ing the number of mobile hosts. The total amount of
traffic is the sum of the traffic that the application
actually sends/receives and the path information.

The figure shows that the traffic of the Conven-
tional method increases exponentially. This is because
the increase of hosts increases both the frequency of
the triggering-graph updating and the number of op-
ponent hosts receiving the triggering-path informa-
tion. In our method, since the system sends infor-
mation only to hosts that are opponent hosts of the
SEND action, the traffic increases linearly.

Figure 7 shows the ratio of the triggering-path traf-
fic in the total amount of traffic. In the Conventional
method, the trigger information makes up the major-
ity of the traffic even where the number of hosts is
considerably few. The Non-Merge method greatly im-
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proves the efficiency of the traffic compared with the
Conventional method. However, this method may not
be efficient where there are a large number of hosts,
because about 40 percent of the traffic is consumed by
trigger information with a hundred hosts. In the pro-
posed method, the trigger information traffic is always
under 10 percent of the total traffic

6.3 Related Work

Much research has been conducted seeking to im-
prove trigger graph detectability[2][3][4]. In the early
research of the trigger graph, the system detected infi-
nite loops using only the event and the action. There-
fore, these studies improved the detectability by con-
sidering the condition part of the rule. The approach
of Baralis and Widom|[2] constructs the trigger graph
considering the condition with an algebraic approach.
The approaches of Karadimce[3] remove the edges of
the trigger graph that are not executed in a chain by
considering the condition of each edge. [4] determines
whether the detected loop is the infinite loop or the
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finite loop within two or more cycles by unrolling the
detected loop.

These studies assume that the system knows all the
contents of the ECA rules beforehand. Therefore, they
can coexist with our method, which aims to detect the
infinite loop between multiple hosts efficiently. Apply-
ing these techniques to the construction of a trigger
graph on the local host in our method may decrease
the mis-detection of infinite loops.

7 Conclusion

In this paper, we proposed a dynamic method for
detecting infinite loops. Using our method, we can
operate the AMDS more safely in mobile computing
environments. Moreover, we showed that our method
can reduce network traffic, compared with the conven-
tional method, by simulation studies. Further study
is desired to evaluate the efficiency and the network
traffic in real machines. We are also planning to pro-
pose the mechanism for detecting infinite loops by in-
tegrating the dynamic method, the run-time method,
and the static method.
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