
t_maekawa

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

matunami
長方形

t_maekawa

A Query Processing Mechanism for Top-k Query in P2P Networks

Hidekazu MATSUNAMI Tsutomu TERADA
Shojiro NISHIO

Graduate School of Information Science and Technology, Osaka University
Yamadaoka 1–5, Suita-shi, Osaka, 565–0871, Japan

{matunami.hidekazu, tsutomu, nishio}@ist.osaka-u.ac.jp

Abstract

Recently, there has been an increasing interest in con-
tent sharing on peer-to-peer (P2P) networks. Since such a
system employs a flooding mechanism for queries and be-
cause each peer returns many search results, the system’s
response to a query creates heavy traffic. Therefore, we pro-
pose a new and more efficient query processing method for
top-k queries on P2P networks. We focus on the fact that
users usually need search results only with a higher score.
Our method reduces the reply traffic by controlling the num-
ber of query replies. Moreover, we evaluate the proposed
method by simulation studies.

1. Introduction

Recently, the amount of web content on the World Wide
Web (WWW) has been increasing rapidly. Users can find
required content efficiently within a mass of web content by
using a web-search engine such as Google[3]. However, we
cannot get search results or find web content when servers
or networks are in poor condition.

On the other hand, there has been increasing interest in
the research of content sharing on peer-to-peer (P2P) net-
works. We can share resources or services directly through
connections among computers with a P2P-based contents
sharing system, which does not need a centralized server.

Generally, when we request certain web content, we use
a full-text search system with specified keywords. Usually,
we get many search results with a full-text web search sys-
tem. On server-client-based systems such as Google, the
system can easily choose the best-k answers for the query
because it manages all of the contents. On the other hand,
on P2P-based systems, each peer sends query-replies, and
this may cause a large amount of traffic at query-issuing
peers.

In this paper, we propose efficient methods for realizing
top-k queries on a P2P-based content retrieval system. In

these methods, we reduced the number of query-replies to
a request according to the number of hops from the query-
issuing peer, and in this way we can reduce the traffic of
query-replies. Also, we evaluate the proposed method by
simulation studies.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce related work to this research. Section 3
presents three methods for realizing the top-k queries. Sec-
tion 4 describes the simulation results. Section 5 gives con-
cluding remarks.

2. Related Work

Pure P2P-based systems, which do not use a central-
ized server, are divided into systems with structured search
topologies and those with unstructured search topologies.

CAN[6] and Chord[7] are P2P-based systems with struc-
tured retrieval topologies. These systems strictly provide
the distribution of a contents key in hash-space by using
distributed hash tables (DHT). The file name or keywords
of a content item are used to create the contents key.

Closer to our work is the pSearch[8], a decentralized
non-flooding P2P information retrieval system based on
CAN. pSearch distributes a document’s indices through the
P2P network based on the document’s semantics, which are
generated by Latent Semantic Indexing (LSI). However, in
these systems, P2P networks have to be strictly organized.

Gnutella[2] and Freenet[4] are systems using unstruc-
tured search topologies. Such systems have no special re-
striction on network topologies and contents-distribution.
Thus, there is the advantage that peers do not need to ex-
change information before searching. However, to get a
more accurate search result, a peer has to send queries to
more peers. This brings about a larger network load com-
pared with structured retrieval topologies.

Kalnis[5] proposes a system that realizes a top-k query
on a Gnutella-type P2P network. In this method, when ex-
ecuting a top-k query, each peer receiving the query returns

matunami
テキストボックス
84

matunami
Proceedings of the International Special Workshop on Databases
For Next Generation Researchers(SWOD2005), pp. 84-87(April 2005).

a number of query-replies about top-k contents. Our pro-
posed methods enhance the efficiency of this method.

Balke[1] proposes another method for processing top-k
queries. This method relies on a super-peer backbone orga-
nized in the HyperCuP topology. In this method, each peer
receiving one query returns only one query-reply. When
the query-issuing peer needs more query-replies, the peer
sends the query again. This method can minimize traffic,
especially with a smallk. However, whenk is large, query
latency becomes extended.

3. Proposed Methods

In this section, we show the three Top-k query-
processing methods proposed in this research.

3.1 Simple top-k method

The simple top-k method is one in which each peer sim-
ply replies to a query. The difference between this method
and the one proposed by Kalnis is that each peer transfers
query-replies only within the top-k query-results from the
received query-replies and contents discovered within itself.

First, a query-issuing peer, which requests certain con-
tent, makes a search-query that consists of a unique query-
id, the search terms, the length of time-to-live for the query
(TTL), and k, the number of query-replies that the peer
needs. Then, the query-issuing peer sends the search-query
to all neighboring peers, that is, peers directly connected
to the query-issuing peer. Next, the query-issuing peer re-
trieves the top-k contents within itself and creates a top-k
search-result list.

Each peer receives the query and forwards the query after
decreasing the TTL. Next, it retrieves contents and returns
the query-replies with the top-k contents to the peer from
whom it received the query.

Each peer that receives query-replies forwards the query-
replies only if they are included in the top-k search-results
list.

With this method, the query-issuing peer can certainly
get the top-k query results from query-reach peers, which
are the peers that received the search-query. However, low-
ranked content among the top-k on each peer has a small
possibility of being included in the top-k contents on the
query-issuing peer, which means that too many unnecessary
query-replies could overflow the network.

3.2 Reduce-k query method

The reduce-k query method reduces the number of
query-replies on each peer to reduce the network load. This
method is almost idenitical to the simple top-k method with-
out the number of query-replies sent by each peer.

30

16

16

16

13

13

9

10

10

9

9

Query-issued peer

(30/3)x1.6 = 16

(k = 30, rm = 1.6, Number in circles iski.)

Figure 1. Number of query-replies for each
peer.

We assignki as the number of query-replies sent by a
peer leavingi hops from the query-issued peer.rm is the
margin of query-replies, andnpi is the number of peers to
which a peer forwards the query. We then define the tempo-
rary number ofki, i. e.k′i, as below:

k′i =
⌊

ki−1 × rm

npi

+ 0.5
⌋

(1)

However, we cannot get a query-reply from a peer whereki

is zero. Moreover, ifki is more thanki−1, it is useless be-
cause a parent peer sends query-replies no more thanki−1.
Consequently, we regularizeki as below:

ki =





ki−1 (ki−1 ≤ k′i)
k′i (2 ≤ k′i < ki−1)
2 (k′i < 2)

(2)

We show an example of determiningki in Figure 1. ki

may be different when the number of hops from the query-
issuing peer are the same.

3.3 Delayed reduce-k query method

The delayed reduce-k query method is one where each
peer makes a delay in sending or forwarding query-replies.
We define the time of delaytlT as the time from the moment
the query-reply is finally received. The number oftlT is
defined as below:

tlT = t0 + t1T (3)

In this expression,t0 andt1 are the parameters determined
in a search-query.T is the number of TTL on the search-
queries transferred to neighboring peers.

In this method, each peer waits to forward or send query-
replies fortlT seconds. If content is not included in the top-
k search-result list before it is time to send query-replies,
there is no need to send a query-reply with such content.

matunami
テキストボックス
85

0

10000

20000

30000

40000

50000

0.00001 0.0001 0.001 0.01 0.1
Hit-rate.

Qu
ery

-re
pli

es
sen

t p
er

pe
er.

 .

All-reply Simple Top-k
Reduce-k Query Delayed Reduce-k Query

Figure 2. Hit-rate vs. query-replies.

We can also define the immediate query-reply rate asri.
Each peer sends query-replies on the top-(kiri) of the top-k
search results list without any delay.

4. Evaluation

In this section, we show the results of our simulation.

4.1 Environmental assumption

In this paper, we assume a top-30 full-text web search on
P2P networks.

The number of peers in the simulation environment is set
to 10,000. Each peer connects in a ring configuration: No.0
to No.1, No.1 to No.2, and so on. Each peer selects one peer
randomly and connects to it. In this paper, we assume that
the network topology is fixed.

The number of content units is 1 million, and each peer
has 10,000 of them. We distribute content along a Zipf-like
distribution.

In this simulation, each peer issues a query lasting 1,000
seconds. Simulation time is defined as 1,000 seconds.

The communication speed between peers is 512 kbps,
and the latency of messages is 0.001 + 0.01× ExpRnd sec-
onds. (ExpRnd is an exponential random number whose
average is 1.) The length of the query message is 140 bytes,
and the length of the query-reply message is 640 bytes.

4.2 Simulation results

We ran the simulation in the environment shown above.
We show the average number of query-replies sent by each
peer when we change a hit rate which returns all of the

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7

TTL.

R
e
c
a
l
l
.

0

10000

20000

30000

40000

50000

0 1 2 3 4 5 6 7

TTL.

Q
u
e
r
y
-
r
e
p
l
i
e
s

s
e
n
t

p
e
r

p
e
e
r
.

All-reply Simple Top-k

Reduce-k Query Delayed Reduce-k Query

Figure 3. TTL vs. recall and query-replies.

content satisfying the search conditions, for the simple top-
k method, the reduce-k method, and the delayed reduce-k
method. We setk to 30 in the simple top-k method. In the
reduce-k query method and the delayed reduce-k method,
we setk to 100 andrm at 1.5 because we could get better
results than whenk is 30. In the delayed reduce-k method,
we set the query-latency time to0.01 + 0.002T , while T is
the TTL on a peer.

Figure 2 shows the average number of query-replies for
each peer when the hit rate is changed, which is the proba-
bility of content hitting a query, between 0.00001 and 0.1,
while the TTL is fixed to 5. The number of query-replies
in the three proposed methods reach the ceiling when the
hit-rate reaches a certain value. We reduce 54% of the net-
work load using the simple top-k method compared with
the all-reply method when the hit-rate is 0.003. More-
over, on the ceilings, we reduce the network load using
the reduce-k query method and the delayed reduce-k query
method by 83% and 89%, respectively, compared to the re-
sults achieved via the simple top-k method.

Next, Figure 3 shows the recall and the average number
of query-replies sent by each peer by changing the TTL to
between 1 and 7 while the hit-rate is fixed to 0.001. Re-

matunami
テキストボックス
86

0

2000

4000

6000

8000

10000

12000

14000

74% 76% 78% 80% 82% 84% 86%

Recall. (Top-30)

Q
ue

ry
-r

ep
lie

s
se

nt
 p

er
 p

ee
r.

 .

30
100

k =

r m = 2.6

r m = 1.5
.

Figure 4. Recall vs. query-replies.

call gains by the TTL show an increase, and reach a suf-
ficient value when the TTL is 6. Furthermore, there is lit-
tle difference in recall between the all-reply method and the
three proposed methods. This shows that the three proposed
methods have sufficient recall when we set the parameters,
k andrm, properly.

As expected, the number of query-replies sent by each
peer grows exponentially when the TTL increases. How-
ever, despite the number of query-replies increasing by
about three times in the all reply method and the simple
top-k method, the number of query-replies increases only
twice on the reduce-k query method and the delayed reduce-
k query method. This means it is easy to increase the TTL in
the reduce-k query method and the delayed reduce-k query
method.

Finally, we show why we setk to 100 despite the as-
sumed environment having a top-30 full-text web search.
Figure 4 shows the relationship between the number of
query-replies sent by a peer and the recall on a top-30 search
Figure 4 shows that we can reduce the number of query-
replies sent by a peer by settingk to a larger number while
still achieving the same recall. For example, supposing we
need 84% recall, we have to setrm to 2.6 whenk is 30,
while whenk is 100, 1.5 is a sufficient value forrm. In this
situation, we can reduce 42% of the query-replies by setting
k to 100.

5. Conclusion and Future Work

In this paper, we proposed three methods to process top-
k queries efficiently on P2P networks. We evaluated the
performance of the proposed methods by simulation. Us-
ing the proposed methods, the system can reduce the large
number of query replies sent by a peer under the condition
of a constant number.

However, in the reduce-k query method and the delayed
reduce-k query method, we cannot reliably get top-k results.
In some cases we can get only 60% or 70% of query-replies
compared to the simple top-k method.

In the future, we will evaluate our method in an envi-
ronment where the network topology changes dynamically.
Moreover, we will propose another method which has the
ability to return all query-replies with a smaller network
load than that of the simple top-k method.

Acknowledgement

This research was supported in part by a Grant-in-Aid
for Scientific Research (B) (15300033) from the Ministry
of Education, Culture, Sports, Science and Technology of
Japan and as part of the 21st Century Center of Excellence
Program of the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan.

References

[1] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden,
“Progressive Distributed Top-k Retrieval in Peer-to-
Peer Networks,” Technical Report of Hannover Uni-
versity, July 2004.

[2] “Gnutella,” http://www.gnutella.com/.

[3] “Google,” http://www.google.com/.

[4] I. larke, O. Sandberg, B. Wiley, and T. W. Hong,
“Freenet: A Distributed Anonymous Information
Storage and Retrieval System,”Proc. of ICSI Work-
shop on Design Issuesin Anonymity and Unobserv-
ability, pp.46–66, July 2000.

[5] P. Kalnis, W. S. Ng, B. C. Ooi, and K. -L. Tan, “An-
swering Similarity Queries in Peer-to-Peer Networks,”
Proc. of International World Wide Web Conference,
pp. 482–483, May 2004.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, “A Scalable Content-Addressable Network,”
Proc. of SIGCOMM’01,pp. 161–172, Aug. 2001.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, “Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Application,”Proc. of
SIGCOMM’01,pp. 149–160, Aug. 2001.

[8] C. Tang, Z. Xu, and M. Mahalingam, “pSearch: Infor-
mation Retrieval in Structured Overlays”, ACM SIG-
COMM Computer Communications Review, vol. 33,
no. 1, pp. 89–94, Jan. 2003.

matunami
テキストボックス
87

