
UnitInstrument: Easy Configurable Musical Instruments

Yutaro MARUYAMA
Kobe University, Japan

maruyama@stu.kobe­u.ac.jp

Yoshinari TAKEGAWA
Kobe University, Japan

take@eedept.kobe­u.ac.jp

Tsutomu TERADA
Kobe University, Japan

tsutomu@eedept.kobe­u.ac.jp

Masahiko TSUKAMOTO
Kobe University, Japan

tuka@kobe­u.ac.jp

ABSTRACT
Musical instruments have a long history, and many types
of musical instruments have been created to attain ideal
sound production. At the same time, various types of elec-
tronic musical instruments have been developed. Since the
main purpose of conventional electronic instruments is to
duplicate the shape of acoustic instruments with no change
in their hardware configuration, the diapason and the per-
formance style of each instrument is inflexible. Therefore,
the goal of our study is to construct the UnitInstrument
that consists of various types of musical units. A unit is
constructed by simulating functional elements of conven-
tional musical instruments, such as output timing of sound
and pitch decision. Each unit has connectors for connect-
ing other units to create various types of musical instru-
ments. Additionally, we propose a language for easily and
flexibly describing the settings of units. We evaluated the
effectiveness of our proposed system by using it in actual
performances.

Keywords
Musical instruments, Script language

1. INTRODUCTION
In the long history of musical instruments, many types of

musical instruments such as wind, string, percussion, and
keyboard have been developed. At the same time, various
types of electronic musical instruments were developed such
as digital pianos and electronic guitars. These erectronic
instruments have many functions such as diapason change
and tone change.

However, the main aim of most conventional electronic in-
struments is to duplicate the shape of acoustic instruments,
their hardware configuration cannot be easily changed. This
means that the performance style of each instrument is in-
flexible. For example, pianists cannot play music composed
for the organ with dual manuals using a digital piano with
a single manual, and guitarists cannot play music for a long
scale guitar with 24 frets with a short scale guitar with 12
frets.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME2010, 15­18th June, 2010, Sydney, Australia
Copyright 2010, Copyright remains with the author(s).

Therefore, the goal of our study is to construct the UnitIn-
strument, which consists of various types of musical units.
We assume that most musical instruments can be catego-
rized by functional properties. A unit is a functional ele-
ment of a conventional musical instrument, such as output
timing of sound and pitch decision. Figure 1 shows the
concept of our UnitInstrument and examples of units and
their combinations. The figure shows a KeyboardUnit with
only 12 keys (seven white and five black) and a Fingerboar-
dUnit with only four frets. We can build various instru-
ment configurations by combining multiple units, as shown
at the bottom of this figure. The diapason and configu-
ration of musical instruments are extended to combine the
same types of units, and new musical instruments can be
created by combining different types of units. For example,
by connecting the PickupUnit of a guitar with a Keyboard-
Unit, we construct a new keyboard that can easily produce
vibrato. Additionally, we propose a language for easily and
flexibly define the settings of units.

The remainder of this paper is organized as follows. Sec-
tion 2 explains related work. Section 3 describes the design
of UnitInstrument and Section 4 presents the implementa-
tion of a prototype system. Finally, Section 5 describes
conclusions and our planned future work.

2. RELATED WORK
There is a large amount of research whose main goal is

the improvement of system functions by combining simple
functional units. For example, users can control an object in
a video game by combining LEGO block[1], and browse web
sites by combining triangle board[2], and control programs
with combined block[3]. However, the goal of these studies
is not to construct flexible musical instruments.

There are systems for producing music composition by
combining blocks that have marker[4][5]. The goal of these
systems is to compose music, while the goal of our study is
to construct musical instruments.

The concept of the UnitKeyboard[6], in our previous work,
is similar to UnitInstrument. We can construct various
types of configurations on a musical keyboard using the
UnitKeyboard. On the other hand, the Unitkeyboard realizes
configurable keyboards, while UnitInstrument creates new
musical instruments because it combines various types of
musical instruments. This means that UnitInstrument re-
quires flexible configuration control; therefore we propose a
new language to flexibly define configurations of the UnitIn-
strument.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

7

Examples of UnitInstruments that consist of different types of Units

An example of UnitInstruments that consist of same type of Units

KeyboardUnit
velocity/output timing decision

KeyboardUnit
pitch decision

PickupUnit
velocity/

output timing
decision

ValveUnit
pitch decision KeyboardUnit

output timing/pitch /velocity decision

one octave one octave
single octaves

dual manuals

FingerboardUnit
diapason / pitch

decision

PickupUnit
velocity/

output timing
decision

ValveUnit
pitch decision

MouuthpieceUnit
velocity/diapason/

output timing decision
KeyboardUnit

output timing/pitch
/velocity decision

Figure 1: Concept of UnitInstruments

3. DESIGN
UnitInstrument is designed according to the following poli-

cies.

Extracting components from existing instruments
The UnitInstrument enhances the configuration of conven-
tional instruments by connecting the same types of units
as shown in Figure 1. For example, we can construct a
two-octave keyboard by horizontally connecting two Key-
boardUnits, or construct an organ with dual manuals by
vertically connecting two KeyboardUnits.

In addition, the UnitInstrument can create new musical
instruments by connecting different types of units. For ex-
ample, by connecting the MouthpieceUnit of a wind instru-
ment with the KeyboardUnit, we can construct a new key-
board that easily modulates the velocity and the diapason
of keys being pressed. Additionally, by connecting a Finger-
boardUnit of a guitar to the KeyboardUnit, we can construct
a new keyboard that can easily produce vibrato. In this way,
we can construct new musical instruments that create new
musical expressions, and this concept enhances the possibil-
ity of musical instruments. Note that the use of each unit
is the same as conventional instruments. Therefore, users
can apply the playing techniques and experience they ac-
quired when learning the original instrument to using the
UnitInstrument.

PickupUnit

Holding string data
Connecting data

etc.

Picking string data
Connecting data

etc.

Sound source
Host PC

Wirelessmodule

FingerboardUnits

Acceleration
data etc.

Keying data
Connecting data

etc.

KeyboardUnit

MusicalUnits

HOST

Acceleration
sensor

EnhancedUnit

Figure 2: System structure

Flexible and dynamic reconfiguration
We can construct various types of musical instruments by
connecting multiple units. This means that users need to
configure various types of settings for each unit. To reduce
the setting time, each unit should recognize its connection
status, and the new settings suitable for the current situ-
ation should be automatically assigned to the unit. Addi-
tionally, there should be a script language to enable flexible
configuration of units. The details of this language is ex-
plained in Section 3.2.

3.1 System structure
Figure 2 shows the system structure of the UnitInstru-

ment. The system consists of units and a Host. Units con-
sist of the following MuscialUnits and EnhancedUnits.

3.1.1 MusicalUnit

MusicalUnit is a generic term of instrument units, such
as KeyboardUnit, FingerboardUnit, PickupUnit, and Mouth-
pieceUnit. A MusicalUnit has at least one functional instru-
mental element: output timing of sound, pitch decision, or
velocity decision.

A MusicalUnit has a wireless module to communicate
with the Host and connectors to connect it to other units.
It sends various operation data to the Host, such as keying,
velocity, pitch, and connection. We explain the design of
the three MusicalUnits below.

KeyboardUnit

Each key on a conventional keyboard has all functional el-
ements. Additionally, the 12 keyboard keys are intuitively
arranged according to a musical scale, and many pianists
are familiar with normal-sized keys. Therefore, a Keyboar-
dUnit has 12 keys (seven white and five black) that are
normal size. Additionally, it is equipped with four connec-
tors on the left, right, top, and bottom, for connecting to
other units.

FingerboardUnit

A FingerboardUnit is a unit extracted from the fingerboard
of a conventional guitar. There are four frets on a Fin-
gerboardUnit, because we generally play single sounds and
basic chords with four consecutive frets. In addition, the
positions of the frets in a FingerboardUnit are the same as
a conventional guitar because players of UnitInstruments

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

8

Table 1: Member variables of Unit object

Name Function
(Data type)
basepitch Reference tone of Unit
(pitch C4)

mode mode
(mode KEY DEC)

child Reference to the collection of switches
(*Switch sw)

right Reference to the unit connected
(*unit ri) of the right side

up Reference to the unit connected
(*unit up) at the top

left Reference to the unit connected
(*unit le) of the left side

down Reference to the unit connected
(*unit dow) at bottom

type Reference to unit type
(type PICKUP)

id Reference to unit ID
(int ID)

Table 2: Member functions of Unit object

Name Function
setTone (tone CLEAN GT) Setting of unit tone

setTuning (tuning NORMAL) Setting of unit tuning

should be able to use the techniques of playing a conven-
tional guitar.

PickupUnit

A PickupUnit is a unit extracted from the pickup of a con-
ventional guitar. There are six strings on a PickupUnit be-
cause we generally play melodies and basic chords with six
consecutive strings. In addition, the size of a PickupUnit
is the same as a conventional guitar because of the same
reason of FingerboardUnit.

3.1.2 EnhancedUnit

An EnhancedUnit is equipped with connectors, sensors
or actuators, and a wireless module, to enhance the func-
tionality of a MusicalUnit. For example, users control the
tone of MusicalUnits with their posture, which is calculated
and detected from data of the acceleration sensor on the
EnhancedUnit. The acceleration data is then sent to the
Host. At the same time, users can control diapasons of a
MusicalUnit neighboring an EnhancedUnit equipped with
distance sensors. For example, the longer the distance be-
tween the KeyboardUnit and the EnhancedUnit, the higher
the diapason of the KeyboardUnit.

3.1.3 Host

The Host manages the connection status, and controls
the settings of all units. Additionally, it generates a MIDI
messages based on the status of units and data sent from
the units. The settings are managed by mapping between
the physical inputs on the unit and the actual output of
sound. This mapping is described in the script language we
explain in the next section.

3.2 Script language
We assume that players will frequently reconfigure UnitIn-

struments, even while they are playing them. Therefore,
each unit should be able to recognize its connection sta-
tus, and the system should automatically and immediately
assign the tone and the diapason to the unit. Addition-
ally, we are able to flexibly assign functional elements to

Table 3: Member variables of Switch object

Name Function
(Data type)

priority Setting of control priority
(int pri)

pitch Setting of pitch
(pitch pi)
parent Reference to belonging Unit

(*unit pa)
tone Setting of tone

(tone JAZZ GT)
targetUnit Reference to the trigger unit
(*unit tau)

targetSwitch Reference to the trigger switch
(*switch tas)

id Reference to the switch ID
(int ID)

Table 4: Data types

Data type Function
int integer

tone tone
pitch pitch
mode mode
type type

tuning tuning
*unit collection of the units

*switch collection of the switches

Table 5: Operators

Type Function
= Assign

== Comparison (equal)
!= Comparison (not equal)
+ Addition
– Subtraction
/ Division

+=　 Add and Assign
–= Substract and Assign
< Less than

Table 6: Control statements

Name Function
for(Reset;Condition;Statements) Allowing code to be

Statements repeatedly executed
end for

foreach(variable in Object) Traversing items
Statements in a collection
end foreach

do Allowing code to be
Statements repeatedly

end do

if(Condition) Showing if-then sentence
Statements of condition

{else Statements}
end if

each unit with this UnitInstrument framework. As a result
we can make various types of new instruments. However,
users need to configure various types of settings for each
unit. To reduce the setting time, we propose an object-
oriented script language for programming UnitInstruments.
This script language enables users to reduce the setting time

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

9

Switch objectSwitch objectSwitch objectSwitch object

Unit objectUnit objectUnit objectUnit object child priority

pitch

parent

targetUnit

targetSwitch

tone
idmode

rightup
downleft

type

setTone() setTuning()

: member variable of Unit object

: member function of Unit object

: member variable of Switch object

Switch objectSwitch objectSwitch objectSwitch object
Switch objectSwitch objectSwitch objectSwitch object
Switch objectSwitch objectSwitch objectSwitch object
Switch objectSwitch objectSwitch objectSwitch object
Switch objectSwitch objectSwitch objectSwitch object
Switch objectSwitch objectSwitch objectSwitch object

Figure 3: Relationship between Unit and Switch objects

1. unit f, p;
2. switch s;
3. int i;
4. foreach(p in unit)
5. if(p.type == PICK_UP)
6. p.mode =

SOUND_DEC;
7. p.setTuning(NORMAL);
8. p.setTone(STEEL_GT);
9. end if
10. end foreach

11. foreach(f in unit)
12. if(f.type ==

FINGER_PLATE)
13. f.mode = KEY_DEC
14. for(i=0; i<23; i++)
15. f.child(i).priority = i;
16. f.child(i).pitch = i+1;
17. if(i>3)
18. f.child(i).pitch += 1;
19. f.child(i).priority -= 4;
20. end if

44. s.targetUnit = 1;
45. s.tone =

OVERDRIVE_GT;
46. s.targetSwitch = s.id /

4;
47. end foreach
48. if(f.left != NULL)
49. f.basepitch += 4;
50. f = f.left;
51. f.basepitch =

f.right.basepitch - 4;
52. else
53. break;
54. end if
55. end do
56. f = unit(1).up;
57. f.basepitch= E2;
58. do
59. f.mode = KEY_DEC;
60. foreach(s in f.child)
61. s.targetUnit = 1;
62. s.tone = JAZZ_GT;
63. s.targetSwitch = s.id /

4;
64. end foreach

21. if(i>7)
22. f.child(i).pitch += 1;
23. f.child(i).priority -= 4;
24. end if
25. if(i>11)
26. f.child(i).pitch += 1;
27. f.child(i).priority -= 4;
28. end if
29. if(i>15)
30. f.child(i).priority -= 4;
31. end if
32. if(i>19)
33. f.child(i).pitch += 1;
34. f.child(i).priority -= 4;
35. end if
36. end for
37. end if
38. end foreach
39. f = unit(1).right;
40. f.basepitch= E2;
41. do
42. f.mode = KEY_DEC;
43. foreach(s in f.child)

65. if(f.left != NULL)
66. f.basepitch += 4;
67. f = f.left;
68. f.basepitch =

f.right.basepitch -
4;

69. else
70. break;
71. end if
72. end do

Tone: overdrive
Tuning: normal

FingerboardUnit
s

PickupUnit

I want a multineck
guitar…

Tone: clean Gt.

Tuning: open G

Figure 4: Example script of multineck guitar

1. unit b, f;
2. switch s, k;
3. int i;
4. foreach(b in unit)
5. if(b.type ==

KEYBOARD)
6. b.tone = PIANO;
7. b.mode =

SOUND_DEC;
8. b.basepitch = C4;
9. for(i=0; i<11; i++)
10. b.child(i).pitch = i;
11. b.child(i).priority = 0;
12. end for
13. end if
14. end foreach

15. foreach(f in unit)
16. if(f.type ==

FINGER_PLATE)
17. f.mode = KEY_DEC
18. for(i=0; i<23; i++)
19. f.child(i).priority = i;
20. f.child(i).pitch = i+1;

43. f = unit(5).left;
44. f.basepitch= E2;
45. do
46. f.mode =

KEY_DEC;
47. foreach(s in f.child)
48. s.targetUnit = 5;
49. s.tone =

OVERDRIVE_GT;
50. if(s.id < 4)
51. s.targetSwitch = 0;
52. else if(s.id < 8)
53. s.targetSwitch = 2;
54. else if(s.id < 12)
55. s.targetSwitch = 4;
56. else if(s.id < 16)
57. s.targetSwitch = 5;
58. else if(s.id < 20)
59. s.targetSwitch = 7;

21. if(i>3)
22. f.child(i).pitch += 1;
23. f.child(i).priority -= 4;
24. end if
25. if(i>7)
26. f.child(i).pitch += 1;
27. f.child(i).priority -= 4;
28. end if
29. if(i>11)
30. f.child(i).pitch += 1;
31. f.child(i).priority -= 4;
32. end if
33. if(i>15)
34. f.child(i).priority -= 4;
35. end if
36. if(i>19)
37. f.child(i).pitch += 1;
38. f.child(i).priority -= 4;
39. end if
40. end for
41. end if
42. end foreach

60. else if(s.id < 24)
61. s.targetSwitch =

9;
62. end if
63. end foreach
64.
65. if(f.left != NULL)
66. f.basepitch += 4;
67. f = f.left;
68. f.basepitch =

f.right.basepitch -
4;

69. else
70. break;
71. end if
72. end do

Assigning the white 1st - 6th
keys as the 1st - 6th strings

Using as use the ordinary fingerplate

I want a musical
instrument to play trill

easily…

1
st

2
nd

3
rd

4
th

5
th

6
th

Keying
and producing sounds

Figure 5: Example script of instrument that replaces pickup with keyboard

and use UnitInstruments. 3.2.1 Script specification
The script language consists of Unit objects, Switch ob-

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

10

jects, data types, operators, and control statements. Unit
and Switch objects also have member variables and func-
tions. The relationship between Unit and Switch objects
is shown in Figure 3. The member variables and functions
of Unit objects are listed in Tables 1 and 2, respectively,
the member variables of Switch objects are listed in Table
3, data types in the script language are listed in Table 4,
operators are listed in Table 5, and the control statements
are listed in Table 6.

To define the characteristics of units, a user first chooses
Unit objects or Switch objects and defines the type of unit.
Additionally, the tone and diapason of each unit can be
set using control sentences and the member variables tone
and pitch. In addition, units that are connected via each
connector are referred to right and left, and the user can
define the characteristics of connected units recursively.

3.2.2 Examples of script

A multineck guitar
Figure 4 shows an example script that produces a multineck
guitar structure. The first characteristics of the PickupUnit
is defined from lines 4 to 10 and that of the Fingerboard-
Unit is defined from lines 11 to 38. Lines 39 to 55 means
that when a right neck (a group of FingerboardUnits con-
nected to the left side of PickupUnit) is performed, the sys-
tem outputs sound with the tone of an OverDrive guitar.
On the other hand, lines 56 to 72 define when the other
neck is performed. The system outputs sound by opening
G tuning, and the tone of the soud is of a clean guitar.
Additionally, do statement recursively sets multiple Finger-
boardUnits. Therefore, the diapason of the necks can be
easily increased.

Instruments that replace pickup with keyboard
Figure 5 shows an example script that produces a keyboard
structure with fingerboard, lines 4 to 14 in this script de-
note that the KeyboardUnit is configured like a conventional
keyboard. However, lines 45 to 72 denote that a new musi-
cal instrument can be constructed that allocates one string
to one white key in the KeyboardUnit, the pitch from the
connected FingerboardUnits, and the production of sounds
from the pressing of the keys. This can facilitate sweep-
picking, which produces the sounds for sweeping all strings
and the trill picking that alternately outputs the sounds.

4. IMPLEMENTATION
Figure 6 shows a prototype system including a Keyboard-

Unit, FingerboardUnit, PickupUnit, EnhancedUnit equipped
with an acceleration sensor, EnhancedUnit equipped with a
power supply module, and a Host.

4.1 Host
The Host has a sound module, a wireless module for com-

municating with units. For the prototype, we used a Pana-
sonic CF-Y7 with Windows XP as the Host PC, Microsoft
Visual C++ .NET 2005 for implementing the application to
manage unit settings, Allow7 UM-100 as a wireless module,
and Roland SC-8820 as a MIDI sound generator. In the cur-
rent version of the system, the user configures the settings
by adding scripts to the source code of the prototype.

4.2 MusicalUnit and EnhancedUnit
We used the UnitKeyboard [6], which we developed , as

the KeyboardUnit. We constructed the FingerboardUnit and
PickupUnit using a YAMAHA EZ-AG electric guitar. Since
it is an electric guitar and has 12 frets in a fingerboard, we

Sound module
PC

KeyboardUnit

PickupUnit

Wireless module

FingerboardUnit

EnhancedUnit

HOST

Figure 6: Snapshot of prototype system

Figure 7: Actual performance at Kobe Luminarie
in 2008

cut it to make the four-fret FingerboardUnits. We used Mi-
crochip Technology PIC16F877A to control the MusicalU-
nits. The software on the MusicalUnits is implemented in
C language on Microchip Technology MPLAB.

A FingerboardUnit has a connector on the right and left
side, a wireless module, a microcontroller, and 24 switches.
Additionally, the connectors have magnets for easily con-
necting/unconnecting another unit. The electrical power
for the FingerboardUnit is supplied by the EnhancedUnit
equipped with a power supply module. The PickupUnit
has a connector on the right, left, top, and bottom, a wire-
less module, strings, six vibration sensors for detecting the
vibration of the strings, and a microcontroller. We also
installed an EnhancedUnit equipped with an acceleration
sensor for detecting the player’s motion.

4.3 Actual use
We used the prototype in several actual performances.

We discuss how effective our proposed device was in these
performances.

Kobe Luminarie Citizens Stage in 2008
We performed using the prototype at the Kobe Luminarie
event on December 13 and 14, 2008. Kobe Luminarie is a
large-scale event held in Kobe, Japan every December. It
began in 1995 and commemorates the Great Hanshin earth-

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

11

Figure 8: Actual performance at Tsukamoto labo-
ratory’s 5th year anniversary party

Figure 9: Actual performance at Kobe Luminarie
in 2009

quake of that year. In this performance, we performed with
two KeyboardUnits, a FingerboardUnit, a PickupUnit, and
an EnhancedUnit equipped with high-intensity light emit-
ting diodes (LEDs). There were two performers; one per-
former played the KeyboardUnit, the other played the Fin-
gerboardUnit and the PickupUnit while singing. The Fin-
gerboardUnit and the EnhancedUnit were connected. The
performer playing the guitar played the FingerboardUnit
with his left hand, and performed while waving his left hand
as shown in Figure 7. We showed that the UnitInstruments
were able to be taken apart during the performance.

Tsukamoto Laboratory’s 5th year anniversary party
We played the prototype at the 5th year anniversary party
of Tsukamoto Laboratory on October 30, 2009. We used
two KeyboardUnits, a FingerboardUnit and a PickupUnit.
There were three performers, and we connected/disconnected
two KeyboardUnits, as shown in Figure 8. We programmed
tone and diapason assigned to each KeyboardUnit to change
based on their connection status. Two performers played
the KeyboardUnits. The other played the FingerboardUnit
and the PickupUnit, and he performed and connected/ dis-
connected these units to change the tone and diapason.

Kobe Luminarie citizens stage in 2009
We again performed with the prototype at the Kobe Lu-
minarie event on December 12, 2009. We used a Key-
boardUnit, a FingerboardUnit, and a PickupUnit, and con-
nected/disconnected different types of MusicalUnits. The
tone and diapason of each unit was changed according to
its configuration. There were two performers. First, one
performer played the KeyboardUnit and the other played
the FingerboardUnit and the PickupUnit. In the middle
of performance, the performer playing the FingerboardUnit
and the PickupUnit connected the FingerboardUnit and the
KeyboardUnit after taking the KeyboardUnit from the other
performer, and played the new instrument, as shown in Fig-
ure 9. He easily played sweep-picking to use this instrument.
We showed that we could connect different types of Musi-
calUnits to the UnitInstrument.

5. CONCLUSIONS
We proposed the UnitInstrument, which consists of vari-

ous types of units extracted from conventional instruments
from the viewpoint of functional elements. We can build
various kinds of musical instruments by connecting multi-
ple units.

We intend to design and implement other musical units
such as percussion instruments and wind instruments. Ad-
ditionaly, We will evaluate the hardware characteristics and
usability of our system.

6. ACKNOWLEDGMENTS
A part of our study was supported by the Hayao Nakayama

Science and Technology Cultural Foundation research pro-
motion.

7. REFERENCES
[1] D. Anderson, J. Frankel, J. Marks, A. Agarwala, P.

Beardsley, J. Hodgins, D. Leigh, K. Ryall, E. Sullivan,
and J. Yedida: Tangible Interaction Graphical
Interpretation: A New Approach to 3D Modeling,
Proceedings of Special Interest Group on Computer
GRAPHics (SIGGRAPH2000), pp. 393-402, 2000.

[2] M. Gorbet, M. Orth, and H. Ishii: Triangles:
Tangible Interface for Manipulation and Exploration
of Digital Information Topography, Proceedings of
Computer-Human Interaction (CHI1998), pp. 49–56,
1998.

[3] H. Suzuki, and H. Kato: Interaction-level support for
collaborative learning: AlgoBlock an open
programming language, Proceedings of Computer
Support for Collaborative Learning (CSCL2002)
pp.349–355, 2002.

[4] N. D. Henry, H. Nakano, and J. Gibson: Block
Jam,Proceedings of Special Interest Group on
Computer GRAPHics (SIGGRAPH2002), p. 67, 2002.

[5] M. Kaltenbrunner, S. Jorda, G. Geiger, and M.
Alonso: The reacTable: A Collaborative Musical
Instrument, Proceedings of Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprise (WETICE2006), pp. 406–411, 2006.

[6] Y. Takegawa, T. Terada, and T. Tsukamoto:
UnitKeyboard: An Easily Configurable Compact
Clavier, Proceeding of International Conference on
New Interfaces for Musical Expression (NIME2008),
pp. 289–292, 2008.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

12

