
A Rule-based Acceleration Data Processing Engine
for Small Sensor Node

Kenji KODAMA
Graduate School of

Engineering, Kobe University
kodama@stu.kobe-

u.ac.jp

Naotaka FUJITA
Graduate School of

Engineering, Kobe University
nfujita@stu.kobe-u.ac.jp

Yutaka YANAGISAWA
NTT Communication Science

Laboratories
yutaka@cslab.kecl.ntt.co.jp

Tsutomu TERADA
Graduate School of

Engineering, Kobe University
tsutomu@eedept.kobe-

u.ac.jp

Masahiko TSUKAMOTO
Graduate School of

Engineering, Kobe University
tuka@kobe-u.ac.jp

ABSTRACT
In recent years, various small sensor nodes have been devel-
oped to recognize situations and events occurring in the real
world for the development of context-aware systems. We
consider that the acceleration sensor is one crucial element
for recognizing various types of situations because it has
rich and simple information. An application system using
acceleration data has the following requirements on sensor
node: 1) rapid processing of data without large memory
since the amount of acceleration data is much greater than
the amount of other sensor data; 2) a node that can reduce
the amount of data sent to a server; and 3) systems that can
be easily con�gured by users with low cost. Existing sen-
sor nodes, however, do not have enough functions to satisfy
these requirements. In this paper, we propose a rule-based
data processing engine for processing acceleration data. Our
proposed system can rewrite the rules on each node with a
few bytes of data. To evaluate our proposed mechanism, we
experimented with our rule-based system implemented on
our small sensor node called MoCoMi-Chip.

General Terms
Design, Implementation, Experimentation, Performance

Keywords
Acceleration Sensor, Rule Base, Sensor Node

1. INTRODUCTION
Recent technological advances have created pervasive com-
puting systems using many small computer nodes with vari-
ous types of sensors to obtain events that occurred in the real
world. The nodes enable us to develop new services, based

on huge amounts of information such as contexts, events,
and situations.

Many existing nodes have several types of sensors such as
temperature, proximity, acceleration, light, pressure, and
magnetic to extract bene�cial real information [1]. Among
the above, the acceleration sensor is one of the most signi�-
cant examples for obtaining such data as dynamic motions,
both of humans and objects, in real time. Most existing
sensor nodes have acceleration sensors.

Generally, the amount of acceleration data obtained in a
second is much larger than the other sensor data because an
acceleration sensor obtains data in high frequency. The in-
crease in the amount of data causes a corresponding raise in
communication cost between sensor nodes. Another prob-
lem concerns users: they must frequently adjust each setting
of the sensor nodes to accurately process the acceleration
data because acceleration data are strongly in�uenced by
the real world. For this reason, acceleration sensor nodes
require operation-speci�ed acceleration data.

We consider four requirements: 1) simple description of pro-
gram; 2) recon�gurable program; 3) promptitude; and 4)
low communication cost. Existing sensors, however, use the
same method to process all types of sensors, even though
acceleration sensors have quite di�erent features from other
sensor nodes. In other words, previous sensor nodes have
functions that satisfy the requirements of acceleration sen-
sors because they use acceleration data as well as other sen-
sor data sampled in low frequency. To deal with the acceler-
ation data on the sensor nodes, the data processing system
on a node must introduce speci�ed mechanisms to process
the acceleration data on each sensor node.

In this paper, therefore, we propose a rule-based data pro-
cessing system speci�ed to process the acceleration data on
small sensor nodes. Using rule description, users describes
the operations of sensor nodes simply and compactly. Fur-
thermore, to modify the rules, users can change operations
dynamically in real time. Our proposed system can operate
sensor data in high frequencies because the engine uses a

simple processing method. The engine can reduce the com-
munication cost because sensor nodes can only send sensor
data or contexts when the engine detects events. More-
over, we describe an implementation of our rule-based sys-
tem on our small sensor node called a Motion sensing and
Communication Minimized Chip (MoCoMi-Chip). We also
experimentally evaluated the performance of our proposed
mechanism based on the above four system requirements.

This paper is organized as follows: we survey related works
in Section 2. In Section 3, we introduce our approach and
describe the design of our proposed system in Section 4. In
Section 5, we show an evaluation of our system. Finally, we
conclude in Section 6 with our summary and directions for
future work.

2. RELATED WORKS
In this section we show related systems using sensor nodes.
First, we introduce systems that obtain context in the real
world. Second, we introduce database systems that process
sensor data on sensor networks. Finally, we introduce rule-
based systems for sensor nodes.

Many researchers have attempted to obtain the contexts of
humans or objects using sensor nodes. In these systems,
acceleration data are crucial to obtain both the contexts
and the situations. For example, smart object service sup-
ports human daily life. MediaCup attached sensor nodes
to cups to obtain contexts [2]. DigiClip uses sensor nodes
attached to papers to manage them [3]. User activity recog-
nition systems also use acceleration data for analysis. [4]
proposed methods to estimate the motion of a person us-
ing attached sensor nodes. These systems process the data
stored in server computers without processing the sensor
nodes.

To store sensor data in a server, each node must send data
with a wireless network. As the amount of sensor data ob-
tained by sensor nodes increases, the amount of data sent to
the server also increases. TinyDB can reduce the amount of
sensor data using acquisitional query processing (ACQP) in
sensor networks [5]. TinyDB can process a query described
in a SQL-like query language. The user can indicate the
minimum set of necessary sensor data to send to the server.
However, TinyDB does not suit acceleration data to esti-
mate the motion context due to their features.

In the rest of this section, we mention the recon�gurable
mechanisms for sensor nodes. Over-the-air programming
(OTAP) is proposed to rewrite programs stored on many
sensor nodes in wireless networks [6]. For example, both
MICA MOTE and Smart-Its Particle introduced OTAP to
reduce rewriting cost [7, 8]. However, since OTAP spends
much communication cost and cannot rewrite the program
in real time, this method cannot be adapted to sensor nodes,
which require quick replacing.

Some pervasive services using rule-based systems have been
proposed to adapt various environments for sensor nodes.
A rule-based system can operate small devices as an event-
driven system and can change programs quickly. AhroD
and DYCOM use rule-based systems to operate small sensor
nodes for pervasive services [9, 10]. AhroD is a ubiquitous

7 561211108 4219 3
Data General

Sensor nodes

Host computer
Sensor dataContext code

Figure 1: An application image.

computing device using event-condition-action (ECA) rules
whose description simply and compactly describes device
operation. AhroD has operation rules that concern which
application should be executed and processes them in se-
quence. However, AhroD cannot process sensor data be-
cause it uses binary signals to evaluate input signals. DY-
COME is a context-oriented switcher using a rule-based sys-
tem to process sensor data for sensor nodes. Processing raw
sensor data, DYCOME can dynamically switch an active
application at an event. However, the rule description in
DYCOM cannot describe a motion event because it only
processes raw acceleration data and other sensor data.

3. APPROACHES
As mentioned in Section 1, we propose a method to operate
small autonomous sensor nodes that can process accelera-
tion data. In this section, after describing several examples
of our supposed application systems and the framework of a
sensor network, we discuss the system requirements to pro-
cess acceleration data on our sensor nodes for application
systems. Finally, we show an outline of the method to sat-
isfy the requirements.

3.1 Example Application Systems
We focus on the sensor nodes attached to various indoor
objects. The application systems use collected data from
each sensor node to extract events and context from the
real world.

Figure 1 shows a focused example of application systems.
Here, each person has a sensor node, and some objects also
have a sensor node in the o�ce. Each sensor node obtains
various types of sensor data, and the node extracts bene�-
cial data from the obtained sensor data. After extraction,
the node sends the data by a wireless network to a host
computer. The host computer integrates the received sen-
sor data to calculate complex moving situations or events
that each node can extract. The host computer also sends
the information to application systems. As a result, an ap-
plication system can provide rich context-aware services.

Generally, each node has many types of sensors, such as
acceleration, temperature, light, and so on. Acceleration
sensors are crucial to obtain data to recognize real-world sit-
uations since they can catch the motions or tilts of objects
in detail. Most context-aware systems adapt acceleration
sensors to extract contexts such as human activities, situ-
ations, and events. The acceleration sensor nodes in these
systems must have higher data processing capability than
other sensor nodes.

On the other hand, attachable sensor nodes have poor re-
sources of calculation and battery because they must be
small and low cost. In other words, acceleration sensor nodes
must process sophisticatedly with small resources. To satisfy
these requirements, we must develop a processing method to
reduce processing cost on a node.

3.2 System Requirements
Here we discuss the requirements of the method to process
acceleration data on a small sensor node.

3.2.1 Requirements from Application Systems
• Simple description
In the supposed application, the system is used by
many people, some of whom do not have experience
con�guring sensor nodes. Therefore, sensor node pro-
grams should be thumbnail descriptions.

• Recon�gurable
In the example application systems, sensor node pro-
grams may be di�erent from each node due to provided
services or attached places. The application systems
should change the method to process the sensor data
on each node for each purpose. For example, if a user
wants to add a new event to detect, the program to
process the data on the sensor nodes must be rewrit-
ten in the routine. The features of the sensor data
are di�erent from each attached node. Moreover, each
node has di�erent hardware features so that we must
give individual settings for each node. Since sensor
nodes often need recon�guration, they require great
recon�guration cost. To adapt the processing method
to frequency changing situations, it is necessary to in-
troduce a mechanism to rewrite the program on a node
without much communication and processing cost. To
recon�gure the sensor nodes easily by wireless, com-
munication costs must be low.

3.2.2 Requirements from Acceleration Data
• Promptitude
The acceleration data have di�erent features from the
other types of sensor data, for example, high frequency
sampling, �uidity of data, and independence of data.
In these ways, acceleration sensor nodes need high fre-
quency sensing and rapid response. For example, to
track such human motions as walking and running, the
nodes must sense the acceleration data of the person's
body in 10-100 Hz. On the other hand, temperature
and light are sampled up to 10 Hz. If an alert sys-
tem detects such anomalous events as collisions or the
fall of products in a factory, the system must response
rapidly until a person helps.

• Low communication cost
In general, the amount of acceleration data is larger
than other sensing data because the acceleration sensor
must obtain data to trace a motion in high frequency.
If a node sends all obtained data to the host computer
by a wireless network, the amount of data sent from a
number of nodes may exceed the capacity of the wire-
less network because a small sensor node has only a low
band rate wireless communication device. To avoid
such situations, acceleration sensor nodes must reduce
their transmitted data; that is, sensor nodes must only
send necessary data. Thus, sensor nodes should pro-
cess the acceleration data on the sensor nodes and min-

imize the transmitted data. However, processing must
be simple, because the resources of the sensor nodes
are small.

3.3 Our Approach
In this paper, we propose an acceleration data processing
system that can satisfy the above four requirements for small
acceleration sensor nodes. Here, we brie�y show how to
satisfy the requirements with our system. For a simple de-
scription, we adapt rule-based language to process the sen-
sor data. Our system uses an If-Then rule that consists of
conditions and actions. The condition of the rules is based
on acceleration data. If a condition is implemented, a cor-
responding action is executed. Using rule-based language,
we can rewrite the sensor node program. To add or delete
rules, application systems can quickly change the operation
of sensor nodes and reduce the communication cost of re-
con�guration. For promptitude, we adapt threshold com-
parisons to decide the conditions, which are described as
feature values: instantaneous value, average value, sum of
deviation, derivative value, and number of counters. Oper-
ating on event-driven to process the rules based on acceler-
ation data, sensor nodes can reduce communication costs.
Most sensor nodes only send a context as a short piece of
text data to a host computer but do not send raw long sensor
data.

4. RULE ENGINE
FOR ACCELERATION DATA

4.1 Rule Engine Design
Since both sensing acceleration and processing data are el-
emental tasks on sensor nodes, the engine must have their
tasks before every evaluation process cycle. To operate sen-
sor nodes at accurate intervals, the engine uses a hardware
timer for sensing in a cycle. In other words, since the hard-
ware timer announces when the next cycle starts after pro-
cessing all rules, the engine can periodically operate the pro-
cesses on a sensor node. The engine processes the stored
rules in order. Having several rules, the sensor nodes can
operate for several situations. The engine allows combina-
tions of conditions or actions for rule �exibility.

4.2 The flow
Figure 2 shows the essential processing �ow of our designed
rule engine on a sensor node.

1. The engine obtains a piece of acceleration data from
the sensor device on the node, before calculating the
feature values of the acceleration data as preparation.
The feature values are used to recognize the motions,
tilts, and states of the sensor node.

2. The engine fetches a rule one by one, before compar-
ing the condition with extracted feature values in the
previous step. If the engine �nds a matched condition
in a rule description with a feature values, the engine
checks a next rule. In another case, if the checked con-
dition is a combined condition, the engine fetches each
rule from the combined condition and evaluates every
fetched condition recursively.

3. If all fetched conditions are matched with the values,
the engine does the action. The engine also checks the
next from the �rst described rule to the end of the
rules one by one.

Processing of rule sets PreparationSTART
Evaluate it ENDYesNo

Obtain acceleration dataProcessing of conditions
Evaluations completed

Finished processing all rule sets
Processing of actionsExecutions completedFetch a condition Fetch an actionExecute it

Figure 2: System �owchart.

4. The engine waits until an interruption from the hard-
ware timer when the engine has completely evaluated
the rules.

As described above, the engine processes the rules based on
acceleration data in a node.

4.3 Condition
Traditional systems capture motions or situations from ac-
celeration data to calculate average, variance, deviation,
FFT, and Support Vector Machine (SVM) as feature values.
However, sensor nodes cannot calculate such sophisticated
processes as FFT and SVM in real time.

Our systems calculate next three feature values of the ac-
celeration data for high-speed evaluation of the conditions
at preparation. The engine can simply calculate these fea-
ture values on the sensor nodes. The average can show tilts
or smooth sensor data. Variance is an available value to
detect the presence of motion, but it cannot be calculated
rapidly using a low cost MCU. The conditions of our rules
use a sum of deviation that resembles variance to detect the
presence of motion. The engine calculates an average and
a sum of deviation in the last 10 samples. To detect rapid
motions such as object hits, the conditions also use a deriva-
tive value. In addition, the engine uses four counter values
(condition counters) to describe continuous situations fur-
ther to the feature values for evaluation of the conditions.
The engine can increment and reset the condition counters
by executing an action. Using the condition counters, we can
describe the condition of continuous situations: if a state oc-
curs more than once, the engine measures the number. The
engine allows descriptions of conditions that regard a contin-
uous state as an event. Using this regard, we can describe
the condition of an event start where a state is detected
continuously. The engine evaluates conditions to compare
threshold and feature values by simple processing.

4.4 Action
The engine allows the execution of next ten actions by pro-
cessing the rules for sensor nodes.

Sending acceleration data is one basic operation of sensor
nodes. This action sends raw acceleration data, feature val-
ues, and counter values. The engine must also send accel-
eration data continuously when the host computer asks for
stream data. To reduce the communication cost, the en-
gine allows the contexts to be sent that detect events and

15 00 10 bit5 bitflag
Action detailsAction ID00000：Send Acc. data 00001：Send Acc. data continuously00010：Send contexts 00011： Sleep node00100：Output ports 00101：Modify sampling rate00110：Modify sensitivity range 00111：Edit the condition counters01000：Check rules editing 01001: Send stored rules

15 01
Threshold valueFeature value000： Inst.001：Ave.010：Sum of dev.011：Der.100：Count.

8 bit1 bit2 bitflag
Axis/Counters00 : X / A01 : Y / B10 : Z / CH11 : - / CL Compare sign0： <Th1： >Th

3 bit 1 bit
Continuous situation0： regard1： non regard

Condition description

Action description

Figure 3: Format of rule description.

9 0 9 0
09

9 0Transmission header
Send Acc. data：00000

Transmission header Context ID
Send contexts：00010

Td：Sleeping timeTd×10 ms
Sleep node：00011

Ts：Sampling timeTs×1 ms
Modify sampling rate：00101

Transmission data0000： 12bit Acc.(X,Y,Z)0001： Inst. (X,Y,Z)0010：Ave. (X,Y,Z)0011：Sum of dev.(X,Y,Z)0100：Der. (X,Y,Z)0101：All X-axis data0110：All Y-axis data0111：All Z-axis data1000：Counter value

9 0Transmission times
Send Acc. Data continuously：00001

Figure 4: Part of detail formats of action description.

the situations of sensor nodes. Putting the node to sleep
is important to conserve the battery. In addition, the en-
gine allows output ports to indicate LEDs, modifying the
sampling rate and sensibility range to adapt to situations.
The condition counters are edited by action to increment
and reset for continuous situations. The engine also allows
checking for the presence of rules editing and sending stored
rules on sensor nodes.

4.5 Rule Editing Mechanism
The engine runs the rule-editing mechanism to follow the
nxet four steps. First, a sensor node checks the presence
of rules editing to send a request to a host computer as an
action or a routine. Second, after receiving the request, the
host computer sends the presence and areas of rules editing.
Third, if the rules need to be edited, the sensor node sends a
request of rules forwarding. Finally, after rules forwarding,
the sensor node veri�es the rules by check sum and sends a
�nished message or a retransmission request.

4.6 Rule Description
The rules consist of combinations of conditions and actions.
We use a binary rule that can easily evaluate the condi-
tions to compare the threshold value with feature values.
The rules are described based on the formats of the rule de-
scription shown by Figures 3 and 4. The descriptions of the
conditions and actions are �xed-length two-byte data. Users
can program multi-condition and multi-action using a MSB
�ag. In fact, continuing conditions that have MSB �ags are
evaluated as �AND condition.� To program an �OR condi-
tion,� a user should describe each set of rules. Continuing
actions are executed for each action.

A description of a condition consists of �ve components:
kind of values, axis or kind of counter, sign, and regard of
continuous situation and threshold values. The threshold
value is the 8-bit abbreviated feature values or a value of
the condition counters. The feature values are calculated at
the preparation based on the acceleration data.

A description of the condition consists of an action ID and
a con�guration of an action detail. Except for MSB, high
6 bits are allocated for each action, and the low 10 bits
show the con�guration of an action detail. Figure 4 shows
part of the detail formats of the action description. The
con�guration of an action detail di�ers by each action. For
example, for an action that sends acceleration data, users
can select sending data to each axis and each kind of data.

5. EVALUATION
In this section, we experimentally evaluate the performance
of our proposed mechanism from the viewpoint of the four
system requirements. In the experiments, we attached the
MoCoMi-Chip to humans and objects. Table 1 shows speci-
�cations of our developed chip, and Table 2 shows the eval-
uation results. The engine tried to detect occurred events
based on rule descriptions. Figure 5 shows our chip attached
to a pen, and Figure 6 shows acceleration data obtained
from the chip while writing. The engine had rules that are
provided accurate descriptions based on exploratory exper-
iments. The amount of a transmission packet between node
and server was set to 15 bytes, and the payload was set to
8 bytes.

5.1 Simple Description
To evaluate the simpli�cation of operation description, we
compared the amount of code written with our description
language with the amount of code description in C language.
Because C language is the most popular language for pro-
gramming MCU, we adapt a language to compare the sim-
pli�cations. Using the rule description, a rule is composed
of conditions and actions described as binary code whose
size is only two bytes. A set of rules is described as four
bytes in hex format. When we can describe an operation to
detect an event, the amount of the rule description is 20 %
of the amount of the code described in C language. Note
that C language in available to describe the details of oper-
ation using calculations, control statements, and functions
for sensor nodes. For sensor node operations that only have
cyclical routines, however, our rule description is simpler
than C language for users.

5.2 Reconfigurable
We measured the time of the rule editing routine to test
a real-time recon�guration. In this experiment, our chip
had 32 rules and edited eight and 16 rules into new rules.
From this experiment result, the routine takes 12.4 ms when
changed eight rules, and 14.5 ms when changed 16 rules.
This result suggests that the engine can edit the rules in the
sampling cycle required to sense the motions of humans and
objects. In the other words, the engine can change the rules
dynamically without pausing operation for sated the sensor
nodes in the supposed applications.

5.3 Promptitude
To evaluate the promptitude, we measured the operation
time of our proposed system. The operation times included

Table 1: Speci�cations of MoCoMi-Chip.MCU 8051 compatible microcontrollerOperation frequency 16 MHzProgram memory 4 KBData memory 256 byteRadio transceiver nRF2401RF data rate 1 Mbps/250 KbpsCommunication distance approx. 25 mTechnical regulations conformity certif ication 2.4 GHz band wide-band low-power data communication system in JapanInterfaces UART, SPI, Digital I/O, PWMAcceleration full scale ±2 G/6 G selectableAcceleration resolution 12 bitConsumption current Transmission： Typ.20 mA， Sleep： 4μAPower supply DC 3 to 9 VOverall size 20×20×3.9 ㎜Weight approx. 1 g
Table 2: Evaluation resultsName of detected events Tx data[Byte] Amount of data rate Number of occurred events Processing time [ms] Number of rules Amount of codeIn C language[Byte]Transmit raw 3-axis acceleration data 75000 100 - - - -Start of free fall 150 0.2 10 2.47 7 138Fall to floor 585 0.78 39 2.49 12 294Spots on a dice 270 0.36 18 2.58 18 396Opening and closing a door 180 0.24 12 2.33 6 130Opening and closing a drawer 180 0.24 12 2.47 10 216Start of writing 1575 2.1 105 2.30 4 84Standing and sitting of human 435 0.58 29 2.38 8 169Human moving 2010 2.68 134 2.11 3 59Stop hand motions 240 0.32 16 2.30 4 88

MoCoMi-ChipMCU & Transceiver nRF24E1
AntennaAcceleration sensor LIS3LV02DQ
[top view]

[bottom view]
Figure 5: MoCoMi-Chip mounted on a pen

-2-1
01
2

0 5 10 15 20time [sec]
Accelera
tion [G]

050100150200250

Sum of d
eviation [
-]

Average Sum of deviation

Detect Writing Detect Writing

Figure 6: Acceleration data in pen operation

both obtaining the sensor data and sending messages of
events as a context to the server. To measure operation
time, we used a hardware timer on MCU in our chip. In
this experiment, the engine detects such events as opening
and closing a door, starting a free fall of a chip, writing,
and a moving human. Table 2 shows the processing time
results. In most cases, the processing time was less than
2.5 ms. In other words, the engine can process the opera-
tion to detect events with over 400 Hz. To obtain human
motions, an event detection system must generally process
the detection operation over 10-100 Hz. Thus, the results
indicate that the engine has enough power to detect human
events in real time. In addition, we measured the processing
time of each part of the operation. The longest processing
time was the transmitting operation, which required 1.0 ms.
Evaluating the rule's condition required about 0.04 ms. To
completely �nish processing at a cycle, we must strictly de-
scribe the rule and reduce the number of occurred events
found within a process cycle. This technique enables us to
reduce the processing time although we increase the number
of rules described in a sensor node.

5.4 Low Communication Cost
To evaluate the communication cost, we experimentally mea-
sured the amount of data sent from a sensor node to the
server computer. In this experiment, we compared the case
of event contexts as a text with event contexts and raw
three-axes acceleration data. We measured the amount of
transmission data by transmitting event contexts and raw
three-axes acceleration data and compared them to evaluate
communication cost. For the settings, our chip has rules to
detect the start of each event; an event occurs 10 times per
100 seconds. Table 2 shows the results of this experiment.
The amount of transmission data was less than 2,000 bytes
when our proposed mechanism transmitted the context of
an event. On the other hand, for transmitting raw three-
axes acceleration data within 100 seconds, the amount of
transmission data was 75,000 bytes. This result indicates
that our mechanism can reduce communication cost by one
hundredth of the transmission data. Therefore, we consider
that the mechanism can save more power of the sensor nodes
than the naive transmission method.

5.5 Discussion
We detected the events of humans and object motions using
our proposed system. However, it could not detect complex
situations such as human activities because the engine uses
feature values calculated by simple processing. To detect
complex situations, we must con�gure the rules to transmit
acceleration data when a motion occurs and calculate them
on a host computer, as in traditional systems. Therefore,
an operation that combines our proposed systems for sensor
nodes and host processing operation is available to conserve
the batteries of sensor nodes and communication costs.

We implemented the engine to our chip on an Intel 8051
compatible MCU. The program size of the engine was 4
KB. Therefore, we can implement it on most conventional
sensor sensor nodes because they have larger resources than
our chip.

6. CONCLUSION
In this paper, we proposed and designed a rule engine to
process acceleration data on small sensor nodes. We devel-

oped an acceleration sensor node called MoCoMi-Chip and
evaluated the performance of the engine with a node from
the viewpoint of the four system requirements. Evaluation
results show that the engine satis�es the four requirements.
In the future, we plan to develop a system that easily de-
scribes and generates the rules. We also plan to develop a
rule engine that processes other sensor data.

7. REFERENCES
[1] Beigl, M., Krohn, A., Zimmer, T. and Decker, C.:

Typical Sensors needed in Ubiquitous and Pervasive
Computing, In Proc. of INSS 2004, pp. 153�158
(2004).

[2] Beigl, M., Gellersen, H.-W. and Schmidt, A.:
Mediacups: Experience with Design and Use of
Computer-Augmented Everyday Artefacts, Computer
Networks, vol.35, No.4, pp.401�409 (2001).

[3] Decker, C., Beigl, M., Eames, A. and Kubach, U.:
DigiClip: Activating Physical Documents, In Proc. of
the Intl. Conf. on Distributed Computing Systems
Workshops (ICDCSW'04), pp.388�393 (2004).

[4] Kawahara, Y., Kurasawa, H. and Morikawa, H.:
Recognizing User Context Using Mobile Handsets
with Acceleration Sensor, In Proc. of the IEEE Intl.
Conf. on Portable Information Devices (IEEE
Portable 2007) (2007).

[5] Madden, S., Franklin, M., Hellerstein, J. and Hong,
W.: TinyDB: an Acquisitional Query Processing
System for Sensor Networks, ACM Tran. on Database
Systems, Vol.30, No.1, pp.122�173 (2005).

[6] Kulkarni, S., Wang, L.: MNP: Multihop Network
Reprogramming Service for Sensor Networks, In Proc.
of the IEEE Intl. Conf. on Distributed Computing
Systems, pp. 7�16 (2005).

[7] Crossbow Technology, inc.
http://www.xbow.com/.

[8] Holmquist, L., Mattern, F., Schiele, B., Alahuhta, P.,
Beigl, M. and Gellersen, H.-W.: Smart-Its Friends: A
Technique for Users to Easily Establish Connections
between Smart Artefacts, In Proc. of the Intl. Conf.
on Ubiquitous Computing (UbiComp 2001), pp.
116�122 (2001).

[9] Terada, T., Tsukamoto, M., Hayakawa, K., Yoshihisa,
T., Kishino, Y., Nishio, S. and Kashitani, A.:
Ubiquitous Chip: a Rule-based I/O Control Device for
Ubiquitous Computing, In Proc. of the Intl. Conf. on
Pervasive Computing (Pervasive 2004), pp. 238�253
(2004).

[10] Koizumi, K., Sakakibara, H., Iwai, M. and Tokuda, H.:
A Context-Oriented Application Switching Mechanism
for Daily Life Supports, the Intl. Conf. on Ubiquitous
Computing (UbiComp 2005), Poster Session (2005).

