

Proc. of Int'l Symposium on Wireless Pervasive Computing

(ISWPC 2006), pp. 450-455 (Jan. 20086).

A Query Processing Mechanism Based on the
Broadcast Queue for Broadcast Database Systems

Shinya KITAJIMA*, Jing CAI*, Tsutomu TERADAT, Takahiro HARA* and Shojiro NISHIO*
* Dept. of Multimedia Eng., Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
Email: {kitajima.shinya, cai, hara, nishio} @ist.osaka-u.ac.jp
T Cybercommunity Division, Cybermedia Center, Osaka University
5-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
Email: tsutomu@cmc.osaka-u.ac.jp

Abstract— In recent years, there has been an increasing interest
in the broadcast database system, where the server periodically
broadcasts contents of a database to mobile clients such as PDAs.
There are three query processing methods in the broadcast
database system: (i) the server processes a query and then
broadcasts the query result to the client; (ii) the client stores
all data that are necessary in processing the query and then
processes it locally; and (iii) the server and the client collaborate
in processing the query. Since the performance of each method
changes according to the situation, such as the interval of query
generation and the size of query results, it is difficult to decide the
optimal method among them statically. In this paper, we propose
a new query processing method which dynamically changes the
order of queries submitted in the queue at the server and also
changes processing methods for the queries according to the
deadline of queries and the system situation. Our method not
only improves the response time but also increases the success
rate of query processing compared with the traditional methods.

I. INTRODUCTION

The recent evolution of wireless communication technolo-
gies has led to an increasing interest in information systems in
which data is disseminated via the broadcast channels. In such
systems, a server broadcasts various data periodically via the
broadband channel, while clients pick out and store necessary
data. Since the data delivery cost of the server little increases
even if the number of clients increases, it can disseminate data
in high throughput independently of the number of clients.

There are many studies for improving the performance of
broadcast database system, which include scheduling tech-
niques at the server side [1, 5, 7, 8], caching techniques at the
client side [1, 8], update propagation techniques [2], integra-
tion of push-based broadcast and pull-based broadcast [3], and
pre-fetching techniques [4]. Most of them deal with broadcast
data as data items simply, and do not address the performance
improvement by considering contents and characteristics of
broadcast data. Since broadcast systems employ various data
formats, such as hypertexts form and relational data according
to applications, the data processing mechanism that considers
the characteristics of broadcast data becomes important to
improve the system performance.

In this paper, we assume the broadcast system that the server
broadcasts contents of a relational database and clients issue
queries to retrieve data from the database. We call such system

0-7803-9410-0/06/$20.00 ©2006 IEEE.

the broadcast database system. There are three query process-
ing methods in the broadcast database system: the on-demand
method, the client method, and the collaborative method. Since
the performance of each method changes according to the
situation such as the interval of query generation and the size
of query results, it is difficult to decide the optimal method
among them statically.

In this paper, we propose a new query processing method
which chooses the query processing method with the least
response time among these three methods. Moreover, we pro-
pose a query processing method which dynamically changes
the order of queries submitted in the queue at the server
and also changes processing methods for the queued queries
according to the deadline of queries and the system status.

The remainder of this paper is organized as follows. Section
Il describes the outline of the broadcast database system.
Section III explains our method in detail, and Section IV
evaluates the performance of our method. Section V discusses
the related work, and we conclude the paper in section VI.

II. BROADCAST DATABASE SYSTEM

Figure 1 illustrates the concept of the broadcast database
system. In the system, the server broadcasts contents of a
relational database via the broadcast channel and clients issue
queries to retrieve the necessary data from the database. We
give out the following assumptions:

Server: The server periodically broadcasts contents of a
relational database. The server also processes queries from
clients.

Clients: Clients have a small storage, low battery, and low
CPU power such as a PDA.

Downlink channel: The broadcast channel from the server to
clients is divided into two channels: broadband main channel
to disseminate the contents of a database repeatedly, and
narrowband sub channel to disseminate the other data.

Uplink channel: There is a narrowband uplink channel from
clients to the server. Clients use the uplink channel to send
queries to the server.

A. Assumed Environment

We assume that our method is used for disseminating infor-
mation to many and unspecified users in town. For example,

450

kitajima
テキストボックス
Proc. of Int'l Symposium on Wireless Pervasive Computing
(ISWPC 2006), pp. 450-455 (Jan. 2006).

Server

e

Uplink

[—

Broadcasting data

Downlink

Main
channel

Sub
channel

¥

Clients

Fig. 1. Broadcast database system.

in the information service for a shopping center, the server
broadcasts the database including the advertising information,
shop information, and goods information in the shopping
center, while hundreds of users receive the broadcast infor-
mation and retrieve the goods information. Although clients
are usually satisfied with receiving broadcast information,
clients occasionally issue queries to the server to retrieve the
information, such as a natural join operation “I want the image
of item A, and the map of the shop selling the item”. We
assume several minutes’ delay of receiving the query result is
acceptable for the clients. On the other hand, clients can set
the deadline to each query. When clients cannot receive the
query result in the time of deadline, the query fails.

B. Query Processing Methods

In the broadcast database system, there are three query
processing methods as follows.

1) On-demand Method: A client sends a query to the
server through the uplink. The server processes the query and
broadcasts the query result via the sub channel.

In this method, since the query processing is completely
done by the server, no workspace is required for the query
processing at client. Additionally, when the query frequency
is low, the waiting time of receiving the query result becomes
short. However, since the sub channel is exhausted when
queries are issued frequently or when the size of query results
is large, it takes long time for the clients to receive the query
result.

2) Client Method: A client stores all the tables related to
the query. Then it processes the query by itself.

In this method, even if the number of clients increases, each
client can receive all the necessary data within one broadcast
cycle, and then get the query result. Moreover, this method
does not require the uplink, therefore it can work even if there
is no uplink. However, a large storage is required on the client
since the client has to store all the necessary tables for query
processing. Moreover, query processing is a heavy workload
for the client.

3) Collaborative Method: A client sends a query to the
server through the uplink. The server processes the query,

=

: RECEIVE
: Now.minutes>50

a

Now.minutes<70
New.Q_ID=3
A : STORE(3, “X”, New.A)

Fig. 2. An example of ECA rule.

attaches the query identifier to the tuples that appear in the
query result, creates rules for the client to process the data,
and then broadcasts the rules via the sub channel. Based on
the received rules, the client receives the necessary tuples from
the broadcast database via the main channel referring to the
identifiers, and reconstructs the query result automatically by
combining these tuples [6].

We use the ECA rule to describe processing rules, which
is the behavior description language for an active database.
Figure 2 shows an example of the ECA rule. In this example,
a client listens the broadcast channel between times 50 and 70
and receives the attribute A which has identifier 3 of table X.

In this method, since a client only needs to store the data
necessary to reconstruct the query result by referring to the
identifiers, the storage size required on the client is reduced
compared with the client method. Moreover, since the size
of an ECA rule is generally much smaller than that of a
query result, the sub channel is rarely exhausted in this method
compared with the on-demand method. However, the response
time of the collaborative method is slightly longer than that of
the client method, since the broadcast cycle becomes longer
when attaching identifiers. Additionally, when queries are
issued frequently, the success rate of the query processing
becomes lower due to the lack of the identifiers.

III. SELECTION OF QUERY PROCESSING METHOD

As mentioned in Section II-B, the system performance,
when each method is used individually, changes according
to the environmental conditions, such as the query issue
frequency and the size of the query result. Thus, the total
system performance can be improved if the server can choose
an appropriate method among the three query processing
methods according to the change of environmental conditions.

In this section, we propose several methods which dynam-
ically choose a query processing method. Firstly, we describe
the LRT method which chooses a query processing method
simply based on the response time, and then describe the
extended methods which are all based on the LRT method.

A. LRT Method

In the LRT (Least Response Time) method, when the server
receives a query from a client, it calculates the response time
respectively for the on-demand method, the client method, and
the collaborative method, and then chooses a query processing
method with the least response time.

451

1) Calculation of Response Time: The system calculates the
response time of the on-demand method, the client method,
and the collaborative method in the LRT method. The sum of
the transmitting data size the up to kth query in the broadcast
queue is represented as S(k), the broadcast bandwidth of the
sub channel is B, and the present time is 7;,,,,. Since the time
for a client to transmit a query to the server, and the time for
the server or the client to spend in query processing are very
short, compared with the time to broadcast the data, we ignore
them.

On-demand method: The response time for the on-demand
method 7, is the sum of the time to finish transmitting all the
data in the broadcast queue of the sub channel and the time
to send the query result. When there are n broadcast data in
the broadcast queue of the sub channel and the size of query
result is s,,, T,, is calculated as follows:

S(n) + Son
B,

Client method: The response time for the client method T,
is the time until all the required tables are broadcast via the
main channel. Here the start time of the nearest broadcasting
for the required table #.;_; meets the following condition:

Ton =

Tel_s > Tnow-

T,; is calculated as follows, where . . is the time in which
all the required tables will be finished broadcasting within one
broadcast cycle:

Ter =te1_e — Thow-

Collaborative method: The response time for the collabora-
tive method 7, is the sum of the time to finish transmitting
all the data before the position where the processing rule is
inserted in the broadcast queue of the sub channel, the time to
send the processing rule, and the time to finish receiving the
required tuple after the client receives the processing rule. The
size of the processing rule is represented as s.,. Assume that
the processing rule is inserted into the mth of the broadcast
queue. Here the start time of the nearest broadcasting for the
required tuple ?.,_s meets the following condition:

Sim—1) +5c
B '
T, is calculated as follow, where ., . is the time in which

all the required tuples will be finished broadcasting within one
broadcast cycle:

tCOJ Z Tl’lOW +

Teo = teo_e — Thow-

2) Query Processing Algorithm: The query processing pro-
cedure of the LRT method is as follows.

1. Query generation: A client sends a query with the
additional information, such as the storage capacity of client
and the deadline of the query, to the server through the uplink.
In addition, the client begins to store the tables required for
the query processing from the broadcast database.

2. Selection of the query processing method: The server
calculates the response times respectively for the on-demand
method, the client method, and the collaborative method, and
then chooses the optimal method with the least response time.

3. Query processing: The server takes appropriate actions
according to the selected processing method.

4. Data transmission to the client: The server adds the
corresponding broadcast data for the client to the broadcast
queue of the sub channel.

5. Data reception and reconstruction of the query result:
According to the transmission data of the sub channel, the
client takes the corresponding process. When receiving the
query result, the client uses the result as it is; when receiving
the processing rule, the client receives the tuples attached
with the identifier and reconstructs the query result based on
the rule; when nothing received, the client performs query
processing by itself, only after receiving the necessary tuples
required for the query processing via the main channel.

In the LRT method, the transmitting data of the collaborative
method is added to the broadcast queue of the sub channel at
the position before the transmitting data of the first on-demand
method in the queue, since the size of the processing rule is
much smaller than that of the data for the on-demand method.
However, the server cannot choose the collaborative method,
if a query processed by the on-demand method already in the
queue exceeds the deadline by adding the rule for the latest
query.

3) Problems of LRT Method: In the LRT method, when the
selection number of the on-demand method with large query
results increases, the queue may become very long.

Moreover, the response times of queries processed by the
on-demand method in the queue becomes slightly longer, since
the processing rules are inserted before the transmitting data
of the on-demand method. When the selection number of the
collaborative method increases, it is impossible to disregard
the increase in the response time. Specifically, since we do
not allow the queries processed by the on-demand method
already in the queue exceed the deadline, the server cannot
choose the collaborative method.

B. Extended Methods

In the LRT method, a query will fail when the response time
exceeds the deadline even if the server chooses any method
among the three methods. Therefore, we propose the following
three extended methods in order to reduce the response time
and heighten the success rate of the query processing.

The extended methods are based on the LRT method. The
server firstly chooses the query processing method among the
on-demand method, the client method, and the collaborative
method. When there is no available method to be chosen,
or when the response time exceeds the deadline, the server
performs the specific process. Figure 3 shows the workflow of
query processing in the extended methods.

1) LRT-I Method: In the LRT method, the server cannot
choose the collaborative method if a query processed by the
on-demand method and whose result is already in the queue

452

Query generation

Can select the query
processing method?

Query processing

[

‘ Data transmission to the client ‘

[

Data reception

Display the query result

Fig. 3.

7] LRT-Clmcthod

LRT-I method

‘ Properly insert into the queue

LRT-C method

‘ Change the processing method ‘

Can process the query?

‘ Query fails

Flow of query processing in the extended methods.

LRT method

Queue of the sub channel

On-demand
method

On-demand

Col col... On-demand
To method

Client
Exceed the deadline
LRT-I method Queue of the sub channel

method

Z N
|

Insert the processing rule

On-demand
method

On-demand

On-demand
CofCo e method

To method
Client

u Insert behind
*Co:Collaborative method

Fig. 4. LRT-I method.

exceeds the deadline by adding the rule for a query processed
by the collaborative method at the front of the queue.

In the LRT-I (LRT-Inserting) method, as shown in Figure
4, the rule of the collaborative method is inserted behind the
query result of the on-demand method, of which the response
time exceeds the deadline in the LRT method. If there are
multiple such queries, it will be inserted behind the last one.
The query will fail, if its own response time exceeds the
deadline by performing this procedure.

2) LRT-C Method: In the LRT method, if the selection
number of the on-demand method with large query results
increases, the queue will become very long.

As shown in Figure 5, the LRT-C (LRT-Change) method,
the server changes the query processing method of a query
from the on-demand method to the collaborative method, of
which the time from receiving the processing rule to receiving
the required tuples is the shortest.

The server does not perform the change when the query
fails by this change.

3) LRT-C/I Method: The performance is improved further
by combining the LRT-I method and the LRT-C method, since

LRT method

Queue of the sub channel

On-demand

colcol.lco On-demand
method

To method

Client
Nearest to the broadcasting start time
of the collaborative melh()d
LRT-C method Queue of the sub channel

Replace the on-demand method

method

On-demand ’

On-demand On-demand

To Co| Co e method

Client

method

*Co:Collaborative method

Fig. 5. LRT-C method.

these enhanced methods are independent.

The LRT-C/I (LRT-I & LRT-C) method is the combination
of the LRT-I and the LRT-C methods. In the LRT-C/I method,
the server totals the change in response time for all queries in
the queue by applying the LRT-I and the LRT-C methods, and
chooses optimum one.

IV. EVALUATION

This section evaluates the performance of our methods, the
LRT, LRT-I, LRT-C, and LRT-C/I method. Two evaluation
criteria are introduced as follows.

Success rate: The ratio of the queries, of which clients could
get the result, to all of the queries clients issued.

Response time: The elapsed time from the query generation
to the acquirement of the query result. Note that the response
time does not include the time for transmitting the query from
the client to the server and the time for processing the data
at the client side or the server side, since they are adequately
short.

A. Simulation Environment

In the evaluation, the database schema and the query model
is supposed for an information service in s shopping center
described in Section II-A.

The database consists of a shop table and a goods table. For
the sake of simplicity, all tuples are supposed to be the same
size. Moreover, a client only issues queries of a natural join
with the shop table and the goods table.

Table I shows the parameters and the values used in the
evaluation. In the evaluation, when clients intend to store data
more than the permitted size in processing query, the query
fails. In addition, the deadline is given as a parameter to each
query, as shown in Table II, and the query fails when the client
cannot get the query result by the time of deadline. The query
generation intervals are given by the exponential distribution
with a parameter of query frequency.

453

TABLE I

PARAMETERS.
Name Value
Size of database[KByte] 15000
Size of processing rule[KByte] 1
Bandwidth of main channel[Kbps] 4000
Bandwidth of sub channel[Kbps] 500
Number of identifier 50
Ratio of clients with shortage storage | 0.5

TABLE 11
DEADLINES.

Seconds 20 30 40 50 60 70

Ratio 5% 5% | 10% | 20% | 20% | 10%
Seconds 80 90 100 110 120
Ratio 10% | 5% 5% 5% 5%

B. Simulation Result

1) Success Rate: Figure 6 shows the success rates of
the query processing respectively for the LRT method, the
LRT-I method, the LRT-C method, and the LRT-C/I method,
compared with the on-demand method, the client method, and
the collaborative method in changing the query frequency.

In the case of the on-demand method, the success rate is
high when the query frequency is low; while the success rate
falls suddenly when the query frequency becomes higher. This
is because the sub channel is exhausted if the query frequency
is so high with the large query results transmitted via the
narrow band sub channel.

In the case of the client method, even if the query frequency
changes, the success rate does not change since once the
client stores all the necessary tables, the query processing is
performed by itself. However, the success rate is quit low due
to the limit of the client storage.

The success rate of the collaborative method is high when
the query frequency is low; while it falls suddenly when the
query frequency exceeds 2. This is on account for the lack of
identifiers when the query frequency becomes higher.

The success rate of the LRT method is much higher than the
on-demand method, the client method, and the collaborative
method, since the server can choose the optimal method among
these three methods according to the situation.

The success rate of the LRT-I method becomes rather higher
than the LRT method. This is because the query which fails
in the LRT method can be processed in the LRT-I method.
Similarly, the LRT-C method also improves the success rate
compared with the LRT method. In the case of the LRT-
C method, the selection number of the collaborative method
increases. Since the size of the transmitting data in the
collaborative method is much smaller than that of the on-
demand method, it seems to moderate the exhaustion of the sub
channel, which accounts for the improvement of the success
rate. Moreover, since the LRT-I method only adds the query to
the queue, while the LRT-C method can shorten the queue, the
server can process more queries, and the success rate of the

—>—LRT —8-LRT-I
—— LRT-C —6—LRT-C/1
—%— On-demand —— Client

90

—+— Collaborative

70

Success rate[%]

40

2 4 6 8 10
Query frequency[times/sec]

Fig. 6. Query frequency vs. success rate.

LRT-C method becomes higher than that of the LRT-I method.

In the case of the LRT-C/I method, the success rate is
highest since it takes advantage of both methods. However,
the degree of the improvement is not remarkable, since the
selection rate of the collaborative method increases just a little
compared with that of the LRT-C method, due to the limitation
of the number of identifiers.

2) Response Time: Figure 7 shows the evaluation of the
average response time for all the methods.

The response time of the on-demand method is short when
the query frequency is low; it becomes much longer when the
query frequency increases. This is because the queue of the
sub channel becomes much longer.

In the case of the client method, even if the query frequency
changes, the response time does not change. Because the time
to store the necessary tables for the query processing at the
client does not change with the change in the query frequency.

In the case of the collaborative method, even if the query
frequency changes, the response time also does not change.
In the collaborative method, the server broadcasts processing
rules via the sub channel and the size of a processing rule
is very small, the queue does not become as long as the on-
demand method. Moreover, the response time of the collabo-
rative method is shorter than that of the client method, since
the client only receives the necessary tuples.

In the case of the LRT method, the response time is
shorter than the on-demand method, the client method, and
the collaborative method when the query frequency is very
low. However, the response time becomes longer when the
query frequency increases, which is almost the same as the
client method.

The response time of the LRT-I method is slightly longer
than that of the LRT method. This is because the response
time of the collaborative method becomes longer by inserting
the processing rule into the middle of the queue, instead of
inserting it in front of the queue in the LRT method.

The response time of the LRT-C method is shorter than
that of the LRT method. When the server changes the query

454

%0 —>~LRT —&-LRT-I
—— LRT-C —— LRT-C/
—%— On-demand —— Client
—— Collaborative

'S
S

&
O

)
<

IS
G

Response timef[s]
w
(=]

2 4 6 8 10
Query frequency[times/sec]

Fig. 7. Query frequency vs. response time.

processing method in the queue from the on-demand method
to the collaborative method, the selection number of the
collaborative method increases, and the exhaustion of the sub
channel is mitigated. As a result, the average response time
becomes shorter, while the response time of the changed query
may become longer.

The response time of the LRT-C/I method is longer than
that of the LRT-C method, but shorter than that of the LRT-I
method, since it is the combination of the LRT-I method and
the LRT-C method. As the query frequency becomes higher,
the response time approaches to the mean value of the LRT-I
method and the LRT-C method.

3) Discussions: The simuration results show that the LRT-
C/T method should be used when many users attach more
importance to the success rate, while the LRT-C method should
be used when many users attach more importance to the
response time.

V. RELATED WORKS

Many researches have been done to improve the perfor-
mance of the broadcast database system. Broadcast disks [1]
reduces the response time by frequently broadcasting hot
items. The idea of the broadcast disks can be introduced into
our research, for example, the server frequently broadcasts the
table with high access frequency if the table of the database is
considered as an item. [3] is similarly to our research, which
unites the push-based broadcast and pull-based broadcast,
the broadcast channel being divided into the push and pull
channel. They use the pull channel to broadcast the required
data item, while our method is to broadcast the query result
and the processing rule.

VI. CONCLUSIONS

In this paper we proposed a new query processing method
which dynamically chooses the query processing method for
broadcast database system. In the proposed method, the server
chooses the method with the least response time among the
three query processing methods. Furthermore, our extended
methods pay more attention to the broadcast queue at the
server, and improve the efficiency of the query processing by
changing the order of the submitted queries in the queue and
changing the processing methods for the queries. Additionally,
the simulation results confirmed that the proposed methods
achieved the high performance in the success rate of query
and the average response time compared with the traditional
methods.

In the future, we plan to examine a method to choose the
query processing method dynamically according to the query
generation frequency. Furthermore, we also plan to examine a
method to choose optimal query processing method under the
situation where the query interval changes dynamically.

ACKNOWLEDGMENTS

This research was partially supported by The 21st Century
Center of Excellence Program “New Information Technologies
for Building a Networked Symbiotic Environment” and Grant-
in-Aid for Young Scientists (A)(16680005) and for Scientific
Research (A)(17200006) and (B)(2)(15300033) of the Min-
istry of Education, Culture, Sports, Science and Technology,
Japan.

REFERENCES

[1] S. Acharya, M. Franklin, and S. Zdonik, “Broadcast disks: Data manage-
ment for asymmetric communication environments,” Proc. ACM SIG-
MOD’95, pp.199-210, May 1995.

[2] S. Acharya, M. Franklin, and S. Zdonik, “Disseminating updates on
broadcast disks,” Proc. VLDB’96, pp.354-365, Sept. 1996.

[3] S. Acharya, M. Franklin, and S. Zdonik, “Balancing push and pull for
data broadcast,” Proc. ACM SIGMOD’97, pp.183—-194, May 1997.

[4] D. Aksoy, M. Franklin, and S. Zdonik, “Data staging for on-demand
broadcast,” Proc. VLDB’01, pp.571-580, Sept. 2001.

[5] Q. Hu, D. Lee, and W. Lee, “Performance evaluation of a wireless
hierarchical data dissemination system,” Proc. Mobicom’99, pp.163-173,
Aug. 1999.

[6] M. Kahita, T. Terada, T. Hara, M. Tsukamoto, S. Nishio, “A collab-
orative query processing method for a database broadcasting system,”
Proc. IASTED Int’l Conf. on Communications, Internet and Information
Technology (CIIT’02), Nov. 2002.

[7]1 E. Yajima, T. Hara, M. Tsukamoto, and S. Nishio, “Scheduling strategies
of correlated data in push-based systems,” Information Systems and
Operational Research (INFOR), Vol.39, No.2, pp.152-173, May 2001.

[8] E. Yajima, T. Hara, M. Tsukamoto, and S. Nishio, “Scheduling and
caching strategies for broadcasting correlated data,” Proc. ACM Sympo-
sium on Applied Computing (ACM SAC’01), pp.504-510, March 2001.

455

	TOP2.pdf
	WHITE.pdf
	PAPER.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

