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Abstract
Recent spread of various data broadcasting services

leads to provide enormous and various data. Since, data
that a client needs are a part of them, there has been an in-
creasing interest in information filtering techniques where
a client automatically chooses and stores the necessary
data. Generally, when a client performs filtering, it applies
some filters sequentially and the time required for filtering
changes according to the order of filters. On the other hand,
in recent years, there have been many studies about attrac-
tor selection which is an autonomous parameter control
technique based on the knowledge from living organisms.
In this paper, in order to reduce the load for filtering, we
propose a novel method which adaptively changes the or-
der of filters according to the change in broadcast contents.
This method adaptively decides the control parameters for
filtering by using attractor selection.

1 Introduction
Recent spread of various data broadcasting services

leads to provide enormous and various data. Therefore,
there has been an increasing interest in information filter-
ing techniques. In a broadcast system, while the server can
broadcast large amount of data to clients typically mobile
terminals at a time, the storage of clients are limited[2, 3, 7].
To solve this problem, information filtering to automatically
choose and store necessary data on the clients storage is an
effective and promising approach.

Generally, when a client performs filtering, it applies
some filters sequentially. However, the time required for
filtering changes according to the order of filters, since the
number of data items that match each filter and the filtering
load are different with each other. When the filtering load is
high, filtering speed might become slower than the receiv-
ing speed of data. Thus, in an information filtering system,
how to determine the order of filters is a crucial problem.

On the other hand, in recent years, there have been
several studies about attractor selection which is an au-
tonomous parameter control technique based on the knowl-
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Figure 1. Assumed environment.

edge from living organisms[4, 5]. By using attractor selec-
tion, the system can control parameters depending on the
situation autonomously, thus it can cope with changes of
the system environment flexibly.

In this paper, in order to reduce the load for filtering pro-
cess, we propose a novel method which adaptively changes
the order of filters adapting to the change in broadcast con-
tents. This method adaptively decides the control parame-
ters for filtering by using attractor selection. Furthermore,
we show the results of simulation experiments, which we
confirm that the proposal method improves the load for fil-
tering process compared with other methods.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the outline of an information filtering sys-
tem and Section 3 introduces attractor selection. Section 4
explains our method in details. Section 5 evaluates the per-
formance of our method. Finally, we conclude the paper in
Section 6.

2 Information Filtering System
2.1 Mobile Environment

There are several data broadcasting services that have
been already available, e.g., those using a surplus band of
terrestrial broadcasting, news distributions on the Internet,
and bidirectional data services using satellite broadcasting.
In such data broadcasting services, the server can send enor-
mous information to a large number of users at a time. How-
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ever, the data wanted by a user are generally just a small part
of the broadcast data.

In this paper, we assume a urban data broadcasting ser-
vice in town which is thought to be common in the near
future. Figure 1 shows a system environment assumed in
this paper. In this environment, mobile users equipped with
portable devices such as PDAs and smartphones (mobile
clients) walk in town, and receive broadcast data via the
wireless channel from the nearest server. Some conven-
tional works such as [1] also assume such an information
broadcasting system.

Broadcast contents are mainly text data, and the data of
various genres such as real time information like news and
weather forecast, local store information and event infor-
mation are broadcast. Since mobile clients have limit for
the storage, information filtering to automatically choose
the necessary information for users is highly required. We
call such system as information filtering system.

2.2 Filtering Architecture
In the information filtering system shown in Figure 2,

each client stores broadcast data items once into its receiv-
ing buffer, then performs filtering operations when the num-
ber of the received items reaches the predetermined con-
stant, and stores only the necessary data items on the stor-
age. Here, we show an example of filtering broadcast data.
If a user wants to get data on today’s news about sports, the
system performs filtering operations by using three kinds of
filters to get contents whose (i) category is “news”, (ii) issue
date is today, and (iii) topic is “sports”.

There are various kinds of filters. For instance, a filter
which gets items that match specified category or keyword,
a filter which gets items that are given a timestamp of the
particular period of time, a filter which gets items of high
relevance by using the cosine correlation between the user’s
interest and items[6], and so on. The load of applying these
filters is different with each other, for instance, the load of
calculating the cosine correlation is heavier than that of sim-
ple keyword matching.

Moreover, some filters are often applied at the same time
as shown in the above example. If the filters do not in-
clude ranking operations and do include only selection op-
erations, the order of applying filters does not affect the re-
sult of filtering[7].

2.3 Filtering Cost
If there are multiple filters to apply, the order of apply-

ing filters influences the filtering cost since the number of
data items that match each filter and the processing cost of
the filter are different among filters. Here, the filtering cost
represents the load to perform the filtering operations as a
numerical value, and the load to apply a filter is propor-
tional to the processing cost of the filter per data item and
the number of data items that are applied the filter.

Figure 3 shows an example that the filtering cost changes
according to the order of filters. In this figure, tables (a) and
(b) show a case in which there are same five broadcast data
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Figure 2. Information filtering system.
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Figure 3. Calculation of filtering cost.

items stored in the receiving buffer of a client, but the order
of applying filters is different. Here, let us assume that two
tags are attached to each data item (Tag1: category, Tag2:
keyword) that represent the contents of the item. For in-
stance, item 1 belongs to category “news”, and its keyword
is “sports”.

In table (a), a filter to select data items in category
“news” is applied to five items at first, and then another fil-
ter to select data items with keyword “sports” is applied to
two items that are selected by the first filter. Let us also as-
sume the processing cost of both filters is 1. In this case,
the total cost becomes 7. On the other hand, in table (b),
the keyword filter (“sports”) is applied to the five items at
first, and then the category filter (“news”) is applied to three
items that are selected by the keyword filter. In this case, the
total cost becomes 8. In this way, the filtering cost changes
according to the number of data items that match each filter
and the processing cost of the filter.

If the processing speed of the filters becomes lower than
the receiving speed, the receiving buffer overflows since
data are continuously broadcast. In addition, users use their
mobile terminals not only to receive the broadcast data but
also for other services such as a navigation tool and VOD.
Therefore, the filtering cost should be as small as possible.

In our assumed environment, there are various broadcast
data whose contents dynamically change, such as real time
information like news, weather, and local store and event
information. Moreover, users’ demand also dynamically
changes. In such an environment, a method that can adap-
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Figure 4. Response of the double feedback
loop.

tively and dynamically decide the order of filters is needed.

3 Attractor Selection
3.1 Adaptive Response by Attractor Se-

lection
In this sub section, we describe the outline of the at-

tractor selection mechanism, which has been proposed in
[4]. In [4], the authors claim that organisms form a com-
plicated network system having the networks of many hier-
archies such as gene, protein, and metabolism which they
call the organism networks. When different organism net-
works meet together, they reach to a stable state (attrac-
tor) while changing their structure and route, and form a
organism symbiosis network. This contains many proper-
ties such as expansibility, autonomy, toughness, flexibility,
adaptability, and variety, which are also needed in an in-
formation network. Here, “symbiosis” means that different
organisms two or more kinds interact with each other, and
live by supplying the properties to others which they do not
have mutually.

It is necessary to adapt to a new environment flexibly
while two kinds of organisms without having met before
process to form symbiosis relations. However, they have
not experienced this environment change in the past, so that
they cannot prepare for a hereditary program corresponding
to it.

By conventional studies, it becomes clear that transition
from an original stable state to a new stable state by the reor-
ganization of the gene metabolism network (three classes of
networks of gene, protein, and metabolism) and interaction
between the cells by the chemical substance are important.
Based on this, the authors of [4] suggest a new mechanism
called the adaptive response by attractor selection.

In [4], to represent a complicated gene metabolism net-
work simply, a model having double feedback loops is de-
fined as follows:

dm1

dt
=

syn(act)
1 + m2

2

− deg(act) · m1 + η1, (1)

dm2

dt
=

syn(act)
1 + m2

1

− deg(act) · m2 + η2, (2)

syn(act) =
6act

2 + act
, (3)

deg(act) = act. (4)

m1 and m2 are mRNA densities made by operons 1 and 2,
where an operon is one of the functional units existing on
a genome. η1 and η2 in the third term on the right side in
equations (1) and (2) are noises. The activity act changes
according to the following equation:

dact

dt
=

pro((
Nut th1

m1+Nut1

)n1

+ 1
)
×
((

Nut th2
m2+Nut2

)n2

+ 1
)

−cons × act. (5)

Here, Nut1 and Nut2 are the supply densities of nourish-
ment from the outside for operons 1 and 2; and Nut th1

and Nut th2 are their thresholds. pro and cons are coef-
ficients of production and consumption of the activity, and
n1 and n2 are appropriate constant numbers.

Figure 4 shows the responses of these double feedback
loops. It can be seen that when the outside supply for one
nourishment is cut, the attractor making up for the lack is
selected. There are two absorption domains in this environ-
ment, but only an appropriate attractor is selected. This is
because the fluctuation by noises becomes large when the
environment becomes worse and activity act becomes low,
and then, the system is absorbed by that attractor while it
approaches to the attractor and recovers the activity. This
behavior is an environmental adaptation by attractor selec-
tion.

3.2 Advantage of Attractor Selection
The fully premeditated construction of systems has be-

come impossible with the rapid large-scaling and complex-
ifying of recent information systems. Therefore, in re-
cent years, development of system management techniques
to adapt for changes of the environment flexibly and au-
tonomously has become a crucial issue.

For instance, in the field of network design, conventional
systems have been fully designed to optimize performance
and efficiency for specific (predictable) situations. How-
ever, such an approach does not work well in recent com-
plicated systems, because it takes long time or sometimes
impossible to recover from a large-scale network failure, es-
pecially, unknown type of failures. Therefore, to cope with
unpredictable changes of the system environment, e.g., sys-
tem failures and change of system inputs, another design
approach is required, in which each component in the sys-
tem behaves to maintain a stable state and adapts for the
environmental change flexibly and autonomously. By this
approach, the system can maintain a stable state and offer
a service of good quality in highly dynamic environment,
although the performance may not be optimized.

As the system becomes large-scale and more compli-
cated, it becomes impractical to know in advance all events
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happened in the system and their factors, e.g., reasons and
how to deal with them.

Fuzzy reasoningaccumulates human knowledge as a
knowledge database with If-Then-Else rules, and performs
recognition, control, and reasoning by the reasoning engine.
While it is based on human experiences, it still requires the
advanced construction of rules, thus, the above mentioned
problem is not solved.

Neural networksperform pattern recognition by optimiz-
ing parameters in neurons. However, since they are based
on learning machine, they cannot adapt for a situation that
has not ever met and is hard to be predicted.

On the other hand, a genetic algorithmconverts engineer-
ing data into the form of gene code, and optimizes the sys-
tem by imitating heredity processes that occur in organ-
isms such as mutation, recombination, and optimal choice.
Since it has both two aspects of random search and opti-
mal choice, it is different from approaches that cannot get
away from the local minimum such as the steepest descent
methodHowever, it basically assumes well formulated sys-
tem, thus, it cannot handle unknown changes occurred in
the system.

Simulated annealingis an approach that examines multi-
ple neighboring solutions of the current solution randomly,
and decides probabilistically which neighboring state to
transit. It also has a mechanism to prevent from falling into
the local minimum. However, since it searches for the op-
timal solution heuristically, it generally takes much time to
converge, and cannot cope with frequent changes of the en-
vironment.

As mentioned above, conventional approaches cannot
fully cope with unknown changes in the system flexibly and
quickly.

On the other hand, attractor selection has advantages that
it can cope with unknown changes and its calculation time is
much shorter than conventional heuristic approaches. Since
the contents of broadcast data are continuously changing
in our assumed system environment, attractor selection is
suitable for the problem of determining the order of filters
which we address in this paper.

4 Proposed Method

In this section, we propose a method that can adaptively
follow the change of broadcast contents and reduce the fil-
tering cost by using attractor selection to control the param-
eters to decide the order of filters.

In the proposal method, a client determines filter selec-
tion priority S by using attractor selection, where S con-
sists of a list of filters and defines the order of applying the
filters. Here, let us denote n as the number of applying fil-
ters, and Si,j as the filter selection priority of applying filter
Fi (i = 1, 2, . . . , n) at j-th position (j = 1, 2, . . . , n) in S.

In the following, we describe the proposed method in
detail.

4.1 Applying Attractor Selection
Calculation of the Filtering Cost We define the ratio of
data items which are discarded by applying filter Fi as de-
crease ratio Di. Di is calculated by the following equation
using the number of data items, di, discarded by Fi, and the
number of data items, ai, applied Fi:

Di =
di

ai
. (6)

When a client uses our proposal method in a real environ-
ment, it actually applies the filters to the broadcast data
items, and uses the elapsed time to perform filtering as
the filtering cost. However, in our simulation evaluation,
a client cannot apply filters actually since we use pseudo
data. Thus, we generalize the filtering cost and define the
processing cost of each filter Fj as cj . cj represents the
processing time per data item when a client applies Fj .

The total cost C for applying n kinds of filters in a cer-
tain order to N data items is calculated by the following
equation:

C = N

n∑
j=1

(
cj

j−1∏
k=1

Dk

)
. (7)

Calculation of the Activity In the proposed method, the
activity α is defined by using C, since the system perfor-
mance is considered better when the filtering cost is lower.
Here, the minimum value of C among the last x results of
filtering is denoted by Cmin. Then, the activity α is cal-
culated by the following equation, where the activity be-
comes higher when the filtering cost approaches the mini-
mum cost:

dα

dt
= δ

((
Cmin

C

)λ

− α

)
. (8)

Here, δ and λ are scale factors to control the adaptation rate
and the value of activity. Note that α ranges 0 ≤ α ≤ 1.
Calculation of the Selection Priority The selection pri-
ority Si,j is defined by the following equation, which comes
from the approaches in [5]:

d

dt
Si,j =

syn(α)
1 + S2

max,j − S2
i,j

− deg(α)Si,j + ηi,j ,(9)

syn(α) = α [βαγ + φ∗] , (10)

deg(α) = α, (11)

φ(α) =
syn(α)
deg(α)

, (12)

φ∗ =
1√
2
. (13)

Here, ηi,j is a random number, and β and γ are scale factors
(constants). Si,j ranges 0 ≤ Si,j . Note that for j ≥ 2, Si,j

is set as 0 if Fi is already selected, since it is meaningless
to apply the same filter more than once.

When the filtering cost is low and the activity is high, the
selection priority rarely changes since the first term on the
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Table 1. Parameters.
Parameter Value

Number of times of filtering 50000
Number of filters 5
Number of tags 5
Number of keywords 5
Size of the receiving buffer 5000
Calculation cycle in the optimal method 10000
Calculation cycle in the genetic algorithm 7000
Number of steps in the Runge-Kutta method 10
Band-width of broadcast[Mbps] 10
Size of a data item[KByte] 1

right side in equation (9) is dominant. However, when the
filtering cost becomes high and the activity becomes low,
the third term, i.e., noise, becomes dominant, and the sys-
tem tries to another stable state. That is, the system adapts
to the change of the broadcast contents.

4.2 Flow Chart
In the proposed method, a client performs following

steps every time when N data items are stored in its re-
ceiving buffer.

1. Calculate the current activity α using equation (8).
2. Set the union of the selected filters Uf as Uf = ∅.
3. Perform following steps from (a) to (c) continuously

for j = 1, 2, . . . , n.
(a) Calculate the selection priority Si,j using equa-

tion (9) for i = 1, 2, . . . , n (Fi /∈ Uf ).
(b) Find max i whose Smax i,j is the maximum

among all Si,j calculated in step (a).
(c) Select Fmax i as j-th filter, and add Fmax i to

Uf .
4. Perform the filtering operations according to the order

of filters determined above.
5. Calculate the filtering cost using equation (7).
6. Update Cmin if necessary.

We define one cycle of the above steps as a unit of filtering.

5 Evaluation

This section evaluates the proposed method using simu-
lation studies. The evaluation criterion is the average filter-
ing cost, which is the average of the filtering costs for all
filtering processes performed during the simulation time.

5.1 Simulation Environment
In the simulations, the broadcast data and the filtering

model are assumed as an information service for mobile
clients as described in Section 2. Moreover, we did not use
real broadcast data but use pseudo data to represent vari-
ous situations by changing parameters. To apply multiple
different filters, we attach the same number of attributes as
filters to the pseudo data and the attribute values (keywords)
are used for filtering.

For simplicity, all filters perform selection operations,
i.e., only data items that contain keywords specified by the
client are stored, and other items are discarded. Thus, the
filtering results do not depend on the order of applying
filters[7]. The results of our simulations correspond to the
results in other settings where filters whose applying order
does not affect the filtering results are assumed. We can also
easily consider cases where filters whose applying order
does affect the filtering result by introducing a mechanism
to take dependencies of the applying order into account
when determining the order of filters. By setting various
values for processing cost ci of filter Fi (i = 1, 2, . . . , 5),
we can simulate various cases in real environments.

The distribution of keywords attached to the pseudo data
is determined according to the Zipf distribution as shown in
the following equation:

f(k) =
1
rk∑Na

m=1
1
m

. (14)

fk represents the probability that the keyword k is chosen
for the attribute in each data item. Here, Na denotes the
number of possible keywords, and rk represents the rank
of k. The larger f(k) is, the higher probability that k is
contained in each attribute is.

Table 1 shows the parameters used in the simulations.
In the simulations, the rank of each keyword periodically
changes randomly. By changing the ranks of keywords,
we can simulate the change of the contents of the broad-
cast data. We call the cycle for changing the rank of key-
words as the keyword-rank-changing cycle. We change the
keyword-rank-changing cycle between 600 to 1400.

For simplicity, for all filters, we basically set the pro-
cessing cost ci as 0.6 (millisecond). If we change ci for
each filter, we can simulate arbitrary combination of filters
with different loads such as combination of simple keyword
matching and cosine correlation. In the simulations, we ba-
sically set β = 0.4, γ = 5.0, δ = 3.0, −1.0 ≤ η ≤ 1.0,
and λ = 10 determined by some preliminary experiments.
Furthermore, we set Cmin as the minimum value of the past
50 times of filtering.

5.2 Comparison Methods
In our simulations, we compared our proposed method

with the following four methods.
Minimum Cost Method: In the minimum cost method,

a client calculates the filtering cost for each of all possible
n! kinds of orders of filters for every filtering process, and
adopts the order that gives the minimum cost among them.
Note that this method is unrealistic because the computation
load is too high to apply it in a real environment. Therefore,
we show the performance of this method as a lower bound.

Cyclic Adaptation Method: At a certain calculation cy-
cle, a client calculates the filtering cost for each of all pos-
sible n! kinds of orders of filters for the filtering process at
the cycle, and adopts the order that gives the minimum cost
among them. After this, the client adopts the same order
of filters until the next calculation cycle. In this method,
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the filtering cost at the calculation cycle becomes equal to
that of the minimum cost method, but cannot adapt to the
change of broadcast contents until the next cycle.

Note that the load at the calculation cycle is high, since
the client has to calculate the costs of all n! kinds of orders.
We define the value obtained by dividing the filtering cost to
perform this method once by the calculation cycle as the op-
timal order calculation cost. Moreover, we call the sum of
the average filtering cost and the optimal order calculation
cost as the total cost.

Genetic Algorithm: In the genetic algorithm, a client
periodically searches an appropriate order of filters accord-
ing to the genetic algorithm so that the filtering cost be-
comes less.

Random Method: In the random method, a client de-
cides the order of filters at random for every filtering pro-
cess.

5.3 Simulation Results

Impact of Calculation Cycle in the Cyclic Adaptation
Method Fig 5 shows the average filtering cost, the op-
timal order calculation cost, and the total cost of the cyclic
adaptation method when the calculation cycle changes from
1000 to 12000.

The result shows that the average filtering cost when the
calculation cycle is 1000 is the lowest. This is because the
calculation cycle is short, thus, the server can correspond
to the change of broadcast contents rapidly. The average fil-
tering cost basically becomes higher as the calculation cycle
gets longer.

On the other hand, the optimal order calculation cost be-
comes lower as the calculation cycle gets higher. This is be-
cause the longer the calculation cycle is, the less the number
of times of calculating the costs is.

The total cost, the sum of the average filtering cost and
the optimal order calculation cost, is the lowest when the
calculation cycle is 10000. This shows that the average
filtering cost and the optimal order calculation cost have a
trade-off relation, and the system performance is balanced
when the calculation cycle is 10000 in this simulation envi-
ronment. Thus, we chose 10000 as the calculation cycle in
the cyclic adaptation method in the following experiments.

Table 2. Comparison between the proposed
method and the other methods.

Method Filtering cost [msec]
Minimum cost method 3343.85
Cyclic adaptation method 3806.26
Cyclic adaptation method (total cost) 3849.39
Genetic algorithm 3898.12
Genetic algorithm (total cost) 3920.73
Proposed method 3464.46
Random method 3824.83
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Figure 6. Transition of the filtering cost.

Comparison among the Four Methods Table 2 shows
the average filtering costs of the proposed method, the mini-
mum cost method, the cyclic adaptation method, the genetic
algorithm, and the random method.

From this result, the average filtering cost of the pro-
posed method is lower than that of the cyclic adaptation
method, the genetic algorithm, and the random method.
The average filtering cost of the cyclic adaptation method is
slightly lower than the random method. However, the cyclic
adaptation method requires an extra cost to calculate the or-
der of filters, i.e., the optimal order calculation cost, thus,
the total cost is higher than the cost of the random method.

Moreover, the average filtering cost of the genetic algo-
rithm is higher than that of the cyclic adaptation method. In
the genetic algorithm, the optimal order calculation cost at
the calculation cycle is lower than that in the cyclic adap-
tation method. However, the filtering cost of filters whose
order is determined in the calculation cycle is not always
minimum. Thus, the average filtering cost of the genetic al-
gorithm becomes higher than that of the cyclic adaptation
method.

Figure 6 shows the transition of the filtering costs of the
four methods. Figures 7 and 8 show the transitions of the
activity and the selection priority Si,1(i = 1, 2, . . . , 5) in
the proposed method, respectively. Due to the limitation of
space, we only show the results from the simulation starting
time to the time until 2000 times of filtering processes are
performed.

Figure 6 shows that the filtering cost of every method ex-
cept for the minimum cost method changes largely after the
time when 1000th filtering process is performed at which
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the broadcast contents change. However, in the proposed
method, the filtering cost becomes low soon, which shows
that our method can adopt to the change of broadcast con-
tents.

Figure 7 shows that the activity becomes very low when
the broadcast contents change and the filtering cost be-
comes high. Moreover, Figure 8 shows that when the ac-
tivity becomes low, the random term in equation (9) influ-
ences largely, thus, the selection priority goes up and down
greatly. After a short time, the system transits into a stable
state, and the selection priority of a specific filter rises.

In summary, in the proposed method, the client changes
the order of filters adaptively by using attractor selection
to control the selection priority when the broadcast con-
tents change and filtering cost becomes high. It confirms
us the effectiveness of using attractor selection to adapt to
the change of the broadcast contents. Here, in the proposed
method, the activity sometimes becomes low and the order
of filters is changed even when broadcast contents do not
change. This is due to the influence of the random term in
equation (9).

Impact of β in the Proposed Method Figure 9 shows
the average filtering cost of the proposed method when β
changes from 0.1 to 1.0.

From the result, the average filtering cost is low when
β = 0.3 to 0.8. Here, β is a constant that coordinates the
influence of the random term in equation (9). When β is
very high, the random term influences little, so that the se-
lection priority and the order of filters do not change even
when the filtering cost is high and the activity is low. On the
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other hand, when β is very low, the random term influences
largely, and our method acts similar to the random method.

Impact of γ in the Proposed Method Figure 10 shows
the average filtering cost of the proposed method when γ
changes from 1 to 10.

From this result, the average filtering cost is the low
when γ = 4 to 7. Here, γ is a constant that coordinates
the influence of the activity in equation (9). The influence
of the activity becomes small when γ is high. However, in
our simulations, the average filtering cost is not much influ-
enced by γ.

Impact of δ in the Proposed Method Figure 11 shows
the average filtering cost of the proposed method when δ
changes from 1 to 7.

The result confirms that the average filtering cost hardly
changes even if δ changes, i.e., the impact of δ is very small.

Impact of x in the Proposed Method Figure 12 shows
the average filtering cost of the proposed method when x
changes from 10 to 100. Here, x is the window size for
calculating Cmin, i.e., our method determines Cmin as the
minimum filtering cost among the last x filtering processes.

From the result, the average filtering cost is low when
x = 30 to 100. If x is very small, Cmin is updated fre-
quently, and the activity tends to be unstable according to
equation (8). On the other hand, if x is large, Cmin is rarely
updated even when the broadcast contents change, thus, the
activity also tends to be unstable.

Impact of ci Finally, we change ci as shown in Table 3 to
examine the performance of our method where each filter
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Figure 12. Impact of x

has different processing cost ci. Table 4 shows the aver-
age filtering costs of the proposed method, the minimum
cost method, the cyclic adaptation method, the genetic al-
gorithm, and the random method. Note that λ is set as 4,
since the average filtering cost in the proposed method is
the lowest when λ = 4 by our preliminary experiments.

This result shows that the average filtering cost of the
proposed method is lower than that of the cyclic adaptation
method, the genetic algorithm, and the random method even
when each filter has different processing cost. The average
filtering costs of all methods are lower than those of in Table
2, since the minimum value of ci is lower.

If all filters have different processing costs, the ratio of
C to Cmin becomes large, since the filtering cost changes
largely according to the order of filters and broadcast con-
tents. Therefore, λ should be set a small value to improve
the performance of the proposed method. We are currently
examining a method to appropriately change λ according to
the processing costs of filters. The basic idea of this method
is to normalize the ratio of C to Cmin.

6 Conclusions

In this paper, we proposed a new method that uses attrac-
tor selection to control parameters to determine the order of
applying filters. With the proposed method, the client adap-
tively changes the order of filters following the change of
broadcast contents to reduce the filtering load. The simu-
lation results confirmed that the proposed method reduced
the filtering cost compared with the other methods except
for the minimum cost method (lower bound).

Table 3. Change of ci.
Filter Processing cost [msec]
c1 0.6
c2 0.8
c3 1.0
c4 1.2
c5 1.4

Table 4. Impact of ci.
Method Filtering cost [msec]

Minimum cost method 4008.83
Cyclic adaptation method 4836.02
Cyclic adaptation method (total cost) 4851.07
Genetic algorithm 5939.81
Genetic algorithm (total cost) 5971.16
Proposed method 4325.59
Random method 6211.15

As part of our future work, we plan to examine the influ-
ence of the change of broadcast contents on the performance
of our method in more detail.
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