
CILIX: a Small CIL Virtual Machine for
Wireless Sensor Devices

Yasue Kishino1, Yutaka Yanagisawa2, Tsutomu Terada3,
Masahiko Tsukamoto3, and Takayuki Suyama1

1 NTT Communication Science Laboratories, NTT Corporation, Japan
2 Nippon Telegraph and Telephone West Corporation, Japan

3 Graduate School of Engineering, Kobe University, Japan

Abstract. In this paper, we propose a small virtual machine called
CILIX, which can execute Common Intermediate Language (CIL) ex-
ecutable codes. Although we have designed CILIX to require very small
resources, it supports threading, wireless data transferring, and two ways
of rewriting executable codes: over-the-air programming and use of a mi-
croSD card. We can develop executable codes for small devices using our
favorite programming language.

1 Introduction

Many small wireless computer devices have been developed for constructing sen-
sor networks. Small devices have few sensors and can be operated with small
batteries. Mica MOTE [2] and smart-It [1] are well known examples of such
small devices. Most of these devices are designed individually for specific pur-
poses, and we consider that this individuality makes it impossible to standardize
their specifications. In the future, we may have to construct a sensor network
with various types of small devices.

The cost of software development for heterogeneous networks continues to
increase. If a network consists of a hundred different devices, we have to learn
how to program each of them. Before developing software, we must also create
a hundred programming environments in which to develop the devices.

Virtual machines constitute an effective way to avoid the increased cost
needed to develop software for various hardware architectures. We can develop,
test, and debug software for every device in the same development environment
for a virtual machine.

There is a virtual machine called SimpleRTJ [5] which enables us to use Java
to write program codes for such small devices. The runtime system of SimpleRTJ
requires only 20 KB RAM and a 16bit MPU. SimpleRTJ appears to avoid the
problem of having to develop programs for heterogeneous sensor networks, but
the following two problems remain with this virtual machine: (1) If the developer
does not know Java, he/she must learn it before developing a program code. (2)
It is hard to replace a program code once the code is embedded in a small device.

When we rewrite an executable code on a device, we must directly replace
the code in the ROM of the device by connecting it to a PC. Although we often
replace the executable code on devices to improve the performance of a sensor
network, the executable code is not rewritable on the existing virtual machine.

CIL

compiler

(ex. Visual

studio)

CIL

executable

code (.exe)

Data space for CILIX

Garbage collected heap
RAM

(ex. 4K)

Flash

(ex. 32K)

MPU

I/O

control

Serial

port

Wireless

port

CIL code

analyzer

Compact

code

CIL

application

source files

I/O control code

CILIX code

Compact executable code

Development procedure on a computer

System architecture on a device

Over-the-air

programming

(a) Over-the-air programming

Data space for CILIX

Garbage collected heapRAM

(ex. 4K)

Flash

(ex. 32K)

MPU

I/O

control

Serial

port

Wireless

port I/O control code

CILIX code

File system for microSD

Development procedure on a computer

System architecture on a device

CIL compiler

(ex. Visual studio)

microSD

CIL

executable

code (.exe)

CIL

application

source files

Executable code buffer

microSD

code

Copy 512B

at a time

(b) MicroSD programming

Fig. 1. Development procedure and system architecture

To overcome these problems, we have developed CILIX. It is a small power-
ful virtual machine which can understand CIL [3] executable codes. CIL is an
open specification (published under ECMA-335 and ISO/IEC23271), in which
applications written in multiple high-level languages can be executed in different
system environment. We solve the first problem by providing a ”multi-lingual”
virtual machine. On the other hand, we solve the second problem by using over-
the-air programming facility and microSD support.

2 CILIX

CILIX requires at least a 32KB program memory, 4KB of working RAM, and
a 16bit MPU. We consider this requirement to be reasonable for such existing
small devices as Mica MOTE and Smart-It. Figure 1 shows the development pro-
cedure and system architecture of CILIX. We have mounted CILIX on MSP430,
NEC V850, and Windows PC. Figure 2 and 3 show one of the prototype devices
we used for this demonstration. The prototype device consists of an MSP430
micro controller, a temperature sensor, a light sensor, a 315MHz wireless com-
munication module, and a serial communication port, which can be connected
to an EL panel. We describe our small virtual machine CILIX in detail.
Multi language development Since CILIX is compliant with CIL, developers
can write programs using various languages that have a CIL compiler. We have
evaluated several types of software which are written by Managed C++, Visual
Basic, and C# (Figure 4). The developers can write, test, and debug program
codes on existing powerful IDEs such as Visual Studio .NET. The executable
code can operate on both CILIX and a PC that supports CIL. Moreover, the
developer can choose the Mono [4] and Linux OS for the development.
Saving device resources Small devices have limited memories. Although we
optimized CILIX for small programs, it supports most CIL instructions which
are required for sensor data processing.
Portability We developed CILIX by employing C, which we can use with most
micro controllers. The core of CILIX and I/O control code, which depends on

Fig. 2. Prototype device Fig. 3. Demonstration

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

using System;
using System.Threading;

namespace Sroom
{

class ThreadedRF
{
Thread thread;
int sensorValue;
public bool quit = false;
public void Start()
{
thread = new Thread(new ThreadStart(ThreadMethod));
thread.Start();

}
public void ThreadMethod()
{
while(!quit)

lock(thread)
{
short version = 0;
byte[] data = Cilix.ReceiveWireless(ref version);
if(version == -1)
{
// process received data

}

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

else if(version>3 && sensorValue>150)
Cilix.UpdateProgram(version);

else
Cilix.IgnoreProgram(version);

}
}
public void Sensing(int n)
{
for(int i = 0; i < n; i++)
{
lock(thread)
{

sensorValue = Cilix.GetTemperature();
}
// process sensor data

}
}
[STAThread]
static void Main()
{
ThreadedRF th = new ThreadedRF();
th.Start();
th.Sensing(100);
th.quit = true;

}
}

}

Fig. 4. Sample code of wireless programming and sensing (C#)

the micro controller hardware, are separated. We can easily port CILIX to the
other micro controllers. Actually the I/O control code was accounted for 0.8%
of CILIX in MSP430.

Executable code replacement via wireless communication Developers
can repurpose CILIX devices by replacing the executable code via wireless com-
munication. The over-the-air programming facility makes it easy to replace the
executable codes at many sensor nodes and at sensor nodes allocated a loca-
tion we cannot pick up directly. Figure 1(a) shows this architecture. Since Flash
memory size is limited, we send compact executable codes that do not contain
unnecessary parts of the original executable codes.

Moreover, CILIX provides rewrite control functions. In Figure 4, the exe-
cutable code can determine to accept the new code by itself (lines 27 to 30).
For example, we can overwrite a new program for detailed processing at sensor
nodes allocated to a high temperature area.

When a sensor node receives a new executable code and it determines that
the code should be overwritten, it stops the current program. The new code is
transmitted by several packets, and the new code is overwritten to the program
code area where the current file is stored. Once every part of the new code has
been stored in the program code area, CILIX starts executing the new code.
Executable code replacement using microSD card CILIX also supports
microSD programming for sensor nodes without a wireless communication func-
tion or debugging. Figure 1(b) shows this architecture. CILIX can execute an
executable code placed on a microSD card.
Other functions CILIX has a garbage collected heap and supports the thread-
ing (In Figure 4 two threads are running.) and transferring of data using wireless
communication.

3 Demonstration

In our demonstration we show the dynamic replacement of executable codes
depending on the sensor value. Figure 3 shows an example demonstration. At
the beginning of the demonstration, all sensor nodes behave similarly. After we
have rewritten the executable codes on some sensor nodes, which are allocated
bright areas, their behaviors change dynamically and they restart sensing more
frequently.

We show also an actual development using several programming languages.

4 Conclusion

We introduced our small and powerful virtual machine named CILIX. CILIX
can understand CIL executable codes and enables us to develop by various pro-
gramming languages. Our small virtual machine supports two way of rewriting
executable codes: over-the-air programming and use of microSD card. We plan
to construct a data aggregation sensor network using hundreds of CILIX devices,
and a kind of life-log application that records human daily activities.

Acknowledgement
Part of this work was supported by JSPS Grant-in-Aid for Scientific Research

(A) (20240009).

References

1. M. Beigl and H. Gellersen: Smart-Its: An Embedded Platform for Smart Objects,
Smart Objects Conference (sOc) 2003, 2003.

2. S. Madden, R. Szewczyk, M.J. Franklin, and D. Culler: Supporting Aggregate
Queries Over Ad-hoc Wireless Sensor Networks, in Proceedings of IEEE Workshop
on Mobile Computing Systems and Applications, pp. 49–58, 2002.

3. Standard ECMA-335 Common Language Infrastructure (CLI), http://www.ecma-
international.org/publications/standards/Ecma-335.htm .

4. Mono project, http://www.mono-project.com/Main Page .
5. The Simple Real Time JAVA, http://www.rtjcom.com/ .

