




A Rule-Based Discovery Mechanism of Network Topology

among Ubiquitous Chips

Yasue Kishino†, Tsutomu Terada†, Masahiko Tsukamoto‡, Tomoki Yoshihisa†,
Keisuke Hayakawa∗, Atsushi Kashitani�, and Shojiro Nishio†

† Graduate School of Information Science and Technology, Osaka University
‡ Faculty of Engineering, Kobe University

∗ 3rd Systems Operations Unit, NEC Electronics
� Internet Systems Research Laboratories, NEC Corp.

Abstract
In this paper, we propose a new network topology

discovery mechanism among ubiquitous chips, which
are rule-based, event-driven input/output (I/O) con-
trol devices to compose ubiquitous computing environ-
ments. Since they achieve flexibility by describing be-
havior in a set of rules, we employ a rule-based ap-
proach to discover network topology. In ubiquitous
computing environments, we use various communica-
tion methods and applications at the same time. There-
fore, our flexible discovery mechanism works well in
ubiquitous computing environments. Moreover, we ver-
ified our algorithm by implementing it on a topology
discovery simulator and actual prototype devices of
ubiquitous chips.

1 Introduction
Recent evolutions in the miniaturization of comput-

ers and such component devices as microchips, sensors,
and wireless modules have contributed to the realiza-
tion of ubiquitous computing environments [4, 9, 11].
We previously proposed a new ubiquitous computing
environment using rule-based input/output (I/O) con-
trol devices [10] called ubiquitous chip (Figure 1). We
expect that in the future, ubiquitous chips will be em-
bedded into such any artifacts as furniture, appliances,
walls, and floors because they can provide various ser-
vices to support human daily life.

The behaviors of a ubiquitous chip are described
by a set of event-driven rules. Although the ubiqui-
tous chip has low processing power and small memory,
it can dynamically change its behavior by modifying
stored rules. Moreover, we can also change devices
connected to a ubiquitous chip at any time. Such soft-
ware/hardware modifications can be performed while
applications are running. Using ubiquitous chips, we

can compose flexible applications for ubiquitous com-
puting environments. Since a ubiquitous chip can
achieve complex behaviors by cooperating with other
ubiquitous chips, we can freely move an artifact and
add/remove ubiquitous chips and devices to/from the
location.

To realize various flexible applications, the system
needs to know the network topology among ubiquitous
chips. Therefore, we propose a network-topology dis-
covery mechanism for ubiquitous chips that employs a
rule-based approach to discover network topology, and
we achieve flexible discovery methods that work well
in ubiquitous computing environments.

The reminder of this paper is organized as follows.
Section 2 outlines the ubiquitous chip, and Section 3
describes our mechanism that discovers network topol-
ogy based on a rule-based approach. Sections 4 and
5 explain the realization and verification of our algo-
rithm using a topology discovery simulator and actual
prototype ubiquitous chip devices. Section 6 discusses
our methods, and Section 7 sets forth the conclusion
and planned future work.

2 Ubiquitous Chip
2.1 Overview

Figure 1 shows a prototype of the ubiquitous chip.
Along its sides it has five digital input ports, one analog
input port, twelve digital output ports, and two serial
communication ports. As shown in Figure 2, we can
attach several input/output devices to these ports.

The behaviors of ubiquitous chips are described by
ECA rules, which have been used for describing be-
haviors in event-driven databases. An ECA rules con-
sists of Event, Condition, and Action. Event is an
occurring event, Condition is a condition for execut-
ing actions, and Action is an operation to be carried

tsutomu
Proc. of IEEE Int'l Conference on Pervasive Services 2005 (ICPS'05), pp.198-207 (July 2005). 



59 mm

34 mm

25 cents coin

24 mm

Figure 1. Ubiquitous Chip

illumination 
sensor

buzzer

infrared sender

infrared receiver

serial connecter 

switch with LED

button

Figure 2. Attachments for Ubiquitous Chip

out. Since a ubiquitous chip has little processing power
and small memory, we simplified the language specifi-
cations of ECA rules while maintaining the ability to
fulfill various requirements in ubiquitous computing en-
vironments. Tables 1 and 2 show the lists of events and
actions that can be done on ubiquitous chips. We can
describe the expiration of a timer and the reception
of a message as an event, the situation of input-ports
and internal variables as a condition, and output ports
control and sending a message as an action.

2.2 Communication Function
The communication function is one of the most im-

portant features of ubiquitous chips. A ubiquitous chip
can communicate with other chips via its serial com-
munication ports. These ports transmit information by
means of serial cables or wireless communication mod-
ules. We provide various wireless communication units
for the ubiquitous chip, such as an Infrared (IR) unit, a
Radio Frequency (RF) unit, and a bluetooth unit. All
of these units work with low battery consumption, and
they have different communication areas from several
centimeters to dozens of meters. These characteristics
contribute to flexible ubiquitous computing environ-
ments with ubiquitous chips. Figure 3 shows a proto-
type unit of an RF communication module attached to

Table 1. Events
Name Contents

RECEIVE MESSAGE receiving eight types of
messages via a serial port

RECEIVE DATA 1 byte data reception via a
serial port

TIMER Firing a timer
NONE Evaluating conditions at all

times

Table 2. Actions
Name Contents

OUTPUT On/Off control of output ports
OUTPUT STATE On/Off control of state vari-

ables
TIMER SET Setting a new timer

SEND MESSAGE Sending a message
SEND DATA Sending a 1 byte data

SEND COMMAND Sending a command to control
another ubiquitous chip

HW CONTROL Hardware control

the ubiquitous chip to make wireless serial ports.

Action for Communication

The ubiquitous chip handles three types of packets:
message, data, and command. As shown in Table 2,
the SEND MESSAGE action sends a message that has
a specific ID (0–7) via a serial communication port.
The SEND DATA action sends 1 byte data specified
in the rules or that is input from the analog port. We
designed the SEND MESSAGE action for controlling
other ubiquitous chips and the SEND DATA action for
collecting data from connected sensors and sending it
to another ubiquitous chip or a server. We can manage
ECA rules stored in remote ubiquitous chips by sending
several commands with the SEND COMMAND action.
Table 3 shows a list of commands. By sending these
commands, we can add, delete, enable, and disable spe-
cific ECA rules. Using these commands, the ubiquitous
chip can control surrounding ubiquitous chips.

Multihop Function

The ubiquitous chip has two communication modes:
single-hop and multihop. In the single-hop mode, the
ubiquitous chip processes a packet as soon as it received
the packet. On the other hand, in the multihop mode,
a packet is sent to its destination according to speci-
fied communication pathways. This method enables a
ubiquitous chip to send a message to another ubiqui-
tous chip located outside of its direct communication
area.



Table 3. Commands for the SEND COMMAND
Name Contents

ADD ECA Adding a new ECA rule
DELETE ECA Deleting a specific ECA rule(s)
ENABLE ECA Enabling a specific ECA rule(s)
DISABLE ECA Disabling a specific ECA rule(s)
REQUEST ECA Requesting a specific ECA rule

RF module

antenna

Li-ion battery

Figure 3. Wireless communication module

When a ubiquitous chip sends a packet via multi-
hop communication, it adds a multihop header to the
packet that consists of a list of ubiquitous chip IDs, in-
cluding destination information, communication path-
way, length of the ID list, and the current pointer on
the list. Figure 4 shows the format of the multihop
command. Each ubiquitous chip has 1 byte ID. We can
specify a particular ID (broadcast ID), which means
the ID of all ubiquitous chips. When a ubiquitous chip
receives a multihop packet, it follows these steps:

Step 1: The ubiquitous chip checks the ID of the cur-
rent pointer. If it matches the ID of the ubiquitous
chip or the broadcast ID and the ID of the ubiqui-
tous chip is not contained in the list, it goes to the
next step. Otherwise, the ubiquitous chip ignores the
packet.

Step 2: If the current pointer and the length of the
list are not same (the ubiquitous chip is not at the
end of the pathway), the ubiquitous chip increments
the current pointer and sends the packet to ubiquitous
chips in the next step. Otherwise, it goes to the next
step. When the current pointer points the broadcast
ID, the ubiquitous chip inserts its own ID into the list
instead of the broadcast ID to avoid packet circula-
tion.

Step 3: If the last ID of the ubiquitous chip matches
its own ID or the broadcast ID, the ubiquitous chip
processes the contents of the packet.

0010 01000000 00010010 0100

0000 00100000 01010001001001100100

Command ID (0100: multihop command, 4 bits)

Data length (4 bits)

Number of hop (4 bits)
Current pointer to the list (4 bits)

List of ubiquitous chip IDs (2 bytes – 13 bytes)

Contents of command (1 byte – 12 bytes)
Continuation of the list

Figure 4. Format of multihop commands

3 Rule-Based Topology Discovery
3.1 Scenario

In our assumption, dozens of ubiquitous chips are
embedded all over the place to which various sensors
and output devices are connected (illustrated in Figure
5). These ubiquitous chips collect data from sensors,
send messages, and control attached devices according
to the received data via wireless multihop communi-
cation. A server, which is considered as a laptop or a
PDA, manages network topology when necessary. We
consider the following scenarios.

Building automation system:

Using these devices, we assume a building into
which many kinds of sensors and ubiquitous chips
have been embedded to develop a building au-
tomation system. In the surrounding area of im-
portant sensors, the system should discover all
communication pathways among ubiquitous chips
(mesh topology) because stable communication
capacities are required. On the other hand, in
an environment of unimportant sensors, it is not
required. Moreover, to conserve the batteries of
ubiquitous chips, the system is also required to
discover minimum pathways to such sensors to re-
duce the number of messages. For example, in a
building where entrance and exit management is
important, door switches are important and the
system should discover mesh topology in the sur-
rounding areas of such sensors. In a building using
a temperature management system, temperature
sensors are important.

Networking based on reliability:

We consider an environment where the network
reliability varies from place to place. In such en-
vironment, the system needs to repeat sending
messages to correct errors at places of low net-
work connectivity. On the other hand, at places
of stable network, such repetition is unnecessary.
Therefore, the system needs to change its method



Ubiquitous chip Network topology among ubiquitous chips

Figure 5. Image of our assumed environment

of discovering network topology according to net-
work reliability. In particular, we have to consider
this problem in a system in an environment that
uses both wired and wireless networks.

In this way, applications in ubiquitous computing
environments need a flexible network-topology discov-
ery mechanism. Moreover such flexible mechanism
cannot be realized by using conventional protocols in
ad hoc network areas.
3.2 Approaches

A flexible discovery mechanism should discover only
a necessary part of the network topology because the
server has to minimize the number of messages, and the
required communication structure varies depending on
surrounding situations and application requirements.

Moreover, such a flexible mechanism should have
the capability to change itself dynamically to handle
various application requirements and communication
methods. This feature also enables the system to adopt
new discovery methods in the future. Additionally, we
suppose that embedded devices such as the ubiquitous
chip have little memory for storing routing tables.

For constructing such a flexible mechanism, we pro-
pose a rule-based topology-discovery mechanism. The
introduction of a rule-based mechanism leads to the
following advantages:

• The mechanism can dynamically change its own
behavior because behavior is represented as a set
of rules and the ubiquitous chip can add, delete,
enable, and disable these rules.

• When a new method is proposed, we can easily im-
plement it by modifying rules in embedded ubiq-
uitous chips without any firmware update.

4 Topology Discovery for Ubiquitous
Chips

4.1 Environmental Assumptions
We realized our proposed mechanism on ubiquitous

chips and consider that this mechanism will be used in
the following situations:

• There are dozens of ubiquitous chips in a room
and some applications converge. A user brings his
PDA to the room, modifies the configuration of
the ubiquitous chips, and customizes applications
by using his PDA.

• When a user enters a room with his PDA and some
ubiquitous chips, he incorporates these ubiquitous
chips into previous applications to support him by
buzzers and vibration motors. His PDA discovers
the network topology among ubiquitous chips, in-
cluding additional ones, and modifies the stored
rules on the previous ubiquitous chips to collabo-
rate with the new ones.

• When a new piece of furniture, which includes an
embedded ubiquitous chip, is added to the room,
someone modifies the rules on the ubiquitous chips
in the room.

• In cases where network topology changes fre-
quently, we place a server in the room to manage
topology and maintain applications.

Since the ubiquitous chip already has a rule-based
engine, we realize the rule-based topology-discovery
method using ECA rules and the communication func-
tions of the ubiquitous chip. We assume that the net-
work topology changes infrequently. Therefore, in ac-
tual applications, the server shifts two modes: appli-
cation and topology maintenance. The server shifts to
the topology maintenance mode at regular intervals to
check the topology modification. This shift is also re-
alized by the ENABLE ECA and the DISABLE ECA
commands.

The ubiquitous chip and ECA rules have some limi-
tations. The maximum length of the packet is 16 bytes,
including the multihop header and information for mul-
tihop communication in Action of the ADD ECA com-
mand. For example, when we add a 4 byte rule to an-
other ubiquitous chip via multihop communication, the
maximum number of hops is seven. We cannot add a
rule including action using long multihop via long hop
communication.

The IDs of ubiquitous chips are 1 byte. In this pa-
per, we assume that the IDs of ubiquitous chips in a
place are unique.

Figure 6 shows an example of topology discovery.
When ubiquitous chips are allocated as illustrated in
Figure 6 (a), the server manages ubiquitous chip IDs as
a mesh topology (Figure 6 (b)). Each node of the mesh
has information of its ID, the ID of its parent, the IDs
of its children, and the other IDs that can communicate
with the ubiquitous chip (Figure 6 (c)).



server

1

2

3

4

Communication 
area of the server

Communication area 
of ubiquitous chip1 (Area 1)

Area 2

Area 3

Area 4

(a): Allocation of ubiquitous chips in the real world

server 12
3

4

(b): Mesh topology of ubiquitous chip

(c): Content of each node

ID parent children other
server - 1, 2 -

1 server 3, 4 -
2 server - -
3 1 - 4
4 1 - 3

Figure 6. An example of the topology discovery

4.2 Fundamental Methods
We realized two methods to analyze communication

topology among ubiquitous chips: direct and indirect.
The direct method can reduce the number of pack-
ets, and the indirect method can discover ubiquitous
chips in longer distance. Since both protocols are re-
alized by using ECA rules, they can be easily imple-
mented on ubiquitous chips. On the other hand, our
method requires a server at the discovery of network
topology. The server modifies the ECA rules in ubiq-
uitous chips at the location, sends inquiry messages to
them, receives reply messages from them, and analyses
the network topology among them.

In the followings, we explain the two methods in
detail that can discover a mesh topology among ubiq-
uitous chips. After that, we explain a method that
maintains topology.

4.2.1 Direct Method

Table 4 shows the ECA rules for the direct method.
The procedure for discovering a network topology is as
follows:

Table 4. ECA rules for direct method
WAIT UCID
E:
C: Flag on
A: Setting a timer for a proportional time to its ID
REPLY MESSAGE
E: Reception of REQUEST UCID message
C:
A: Flag on
E: Expiration of the timer
C:
A: Sending the REPLY UCID message
REQUEST UCID: Requesting the ubiquitous chip ID
REPLY UCID: Sending the ID to the server

Step 1: All ubiquitous chips have WAIT UCID rule
beforehand.

Step 2: The server sends the ADD ECA command to
store the REPLY MESSAGE rules to the ubiquitous
chips that can directly communicate with the server.

Step 3: It sends the REQUEST UCID message to
them.

Step 4: It receives the REPLY UCID messages that
are replies to the message from them.

Step 5: It records IDs in replies and adds them to the
mesh topology information.

After these operations, the server begins to discover
ubiquitous chips that can communicate with the server
via two-hop communication. The server can discover
ubiquitous chips in the second hop, as in steps 2–5.
Step 6: The server selects the ubiquitous chip as the
current ubiquitous chip from those handled in the pre-
vious hop, which a minimum of IDs.

Step 7: The server sends the ADD ECA command to
store the REPLY MESSAGE rules in the ubiquitous
chips within a hop from the current ubiquitous chip.
At this point, the server sends a multihop command
with the multihop header, which includes the ID of
the current ubiquitous chip as the first hop and the
broadcast ID as the second hop.

Step 8: It sends the REQUEST UCID message to
these ubiquitous chips.

Step 9: It receives the REPLY UCID messages from
them.

Step 10: It adds these IDs to the mesh topology. If
an ID has already been in the topology, the server
records the ID to the direct communication list for
the current ubiquitous chip. Otherwise, the server
records the ID as a child of the current ubiquitous
chip.

Step 11: It deletes the REPLY MESSAGE rules
stored in Step 7 to prevent the sending of superflu-
ous REPLY UCID messages.



Table 5. ECA rules for indirect method
SEND MESSAGES
E:
C: Flag on
A: Waiting for a proportional time to its ID and sending
the REPLY UCID M messages
REPLY MESSAGES
E: Reception of the REQUEST UCID M message
C:
A: Flag on
RELAY MESSAGE
E: Reception of REPLY UCID M message
C:
A: Sending the REPLY UCID M message
REQUEST UCID M: Requesting the ubiquitous chip ID
REPLY UCID M: Sending the ID to the server by a set
of messages

Step 12: If there is another ubiquitous chip that has
not been selected as the current ubiquitous chip, it is
selected as the new current ubiquitous chip and the
procedure returns to Step 7.

Step 13: The server selects new current ubiquitous
chip, which has the minimum ID among the children
of the previous hop. In the same way, the server re-
peats this operation over the third hop.

Step 14: If the number of hops is over the limit or
all ubiquitous chips are discovered, the server finishes
the procedure.

4.2.2 Indirect Method

Table 5 shows the ECA rules for the indirect method
in which ubiquitous chips send their IDs to the server
as a set of four messages, and the server discovers their
IDs by reconstructing these messages. For example, if
a ubiquitous chip, whose ID is 57 H (01010111), wants
to send its ID to the server, the ID is divided into
four messages whose IDs are 01, 01, 01, and 11. When
the server receives these four messages, it reconstructs
the original ID from them. By this means, the server
can discover a ubiquitous chip ID instead of using the
header of the message in the direct method. There-
fore, this method works well where there are ubiqui-
tous chips farther from the server compared with the
direct method.

The discovery procedure of network topology by
the indirect method is similar to the direct method.
The differences are that all ubiquitous chips have a
SEND MESSAGES rule beforehand, and the server
uses the REPLY MESSAGES rule instead of the
REPLY MESSAGE rule in the direct method and
the use of the RELAY MESSAGE rule. The RE-
LAY MESSAGE rule is added to a ubiquitous chip

Table 6. ECA rules for discovery of a new ubiquitous
chip

ADVERTISE MESSAGE (for a new ubiquitous chip)
E:
C: Flag off
A: Setting a timer to repeat sending the NEW UC mes-
sage, and Flag on
E: Expiration of the timer
C:
A: Sending the NEW UC message
STOP ADVERTISE (for the new ubiquitous chip)
E: Reception of the STOP NEW UC message
C:
A: Killing the timer
NOTIFY DISCOVER (for the others)
E: Reception of the NEW UC message
C:
A: Setting timers 1 and 2
E: Expiration of timer 1
C:
A: Sending the STOP NEW UC message
E: Expiration of timer 2
C:
A: Turning on the flag to cancel the WAIT UCID and
SEND MESSAGES rules
NEW UC: Advertise from a new ubiquitous chip
STOP NEWUC: Stop the NEW UC message

when it becomes the current ubiquitous chip. The
current ubiquitous chip receives the REPLY UCID M
messages that represent the IDs of the new ubiqui-
tous chips by the SEND MESSAGES rule, and it re-
lays them to the server or its parent by the RE-
LAY MESSAGE rule. The RELAY MESSAGE rule
is disabled to avoid duplicate message receptions when
the current ubiquitous chip changes. It is enabled again
when the first child of the current ubiquitous chip be-
comes the current one.

4.2.3 Comparisons between the two Methods

Comparing our two methods, the indirect method
needs more messages than the direct method. Al-
though a ubiquitous chip sends only one message to
notify its ID to the server in the direct method, the
indirect method consumes four messages for the same
notification.

On the other hand, since the indirect method relays
messages to the server without using long multihop
path information, it is more flexible and scalable than
the direct method. In the indirect method, a server
can discover network topology in maximum seven hops,
while three hops in the direct method. Moreover, we
can easily enhance the indirect method to handle more
than eight hops by adding several ECA rules.



Table 7. ECA rules for discovery of disappearing
ubiquitous

CHECK NEXT (for the parent ubiquitous chip)
E:
C: Flag 1 is off
A: Setting timer 3 to repeat sending the CHECK ALIVE
message, and flag 1 is on and flag 2 off
E: Expiration of timer 3
C:
A: Sending the CHECK ALIVE message to the child ubiq-
uitous chip, and flag 2 is on
E: Reception of the REPLY ALIVE message
C:
A: Flag 2 is off
REPLY CHECK (for the child ubiquitous chip)
E: Reception of the CHECK ALIVE message
C:
A: Sending the REPLY ALIVE message
NOTIFY DISAPPEAR (for the parent ubiquitous chip)
E: Expiration of timer 3
C: Flag 2 is on
A: Turning on the flag to cancel the WAIT UCID and the
SEND MESSAGES rules on
CHECK ALIVE: Requesting a message to the child ubiq-
uitous chip
REPLY ALIVE: Reply to CHECK ALIVE message that
means the ubiquitous chip is alive

4.3 Maintenance

We also realize a function to handle network topol-
ogy changes that consists of two discoveries: new ubiq-
uitous chips and disappearing.

Table 6 shows a set of ECA rules that discover new
ubiquitous chips. In the indirect method, after the
server discovers the network topology, it modifies the
opponent of the SEND MESSAGES rule to the parent.
A new ubiquitous chip repeats sending the NEW UC
messages to surrounding ubiquitous chips by the AD-
VERTISE MESSAGE rule. When a ubiquitous chip
receives the message, it sends a STOP NEW UC mes-
sage to the new ubiquitous chip and sends its ID to
the server (by the NOTIFY DISCOVER rule), and
the new ubiquitous chip stops sending a message (by
the STOP ADVERTISE rule). When the server re-
ceives the ID, it selects the ubiquitous chip as the cur-
rent ubiquitous chip and inquires about new ubiquitous
chip IDs in the same way already described. In the
direct method, the server may receive IDs from mul-
tiple ubiquitous chips that discovered the same new
ubiquitous chip. In such situations, the server selects
one of them to be the current one and disables the
RELAY MESSAGE rule from the other ones to avoid
maintenance malfunctions.

Table 7 shows a rule set to detect disappearing ubiq-
uitous chips. Using these rules, the server can check

Table 8. ECA rules for dynamic method
(a): Modified ECA rules based on the indirect method
(case 2)

SEND MESSAGES (replaced from indirect method)
E:
C: Flag on
A: Waiting a proportional time to its ID and sending RE-
PLY UCID M messages several times one by one

(b): Modified ECA rules based on the indirect method
(case 3)

SEND MESSAGES (replaced from indirect method)
E:
C: Flag on
A: Waiting a proportional time to its ID and repeating
send REPLY UCID M messages one by one
E: Reception of STOP REPEAT message
C:
A: Changing flag to send next REPLY UCID M message
RELAY MESSAGES (added to the current ubiquitous
chip)
E: Reception of REPLY UCID M message
C:
A: Sending STOP REPEAT message

(c): Added ECA rules to new ubiquitous chips to detect
network reliability

CHECK NETWORK
E: Reception of the CHECK NETWORK message
C:
A: Sending the REPLY CHECK message several times
CHECK NETWORK: Requesting a message to new ubiq-
uitous chips
REPLY CHECK: Reply to CHECK NETWORK, which
means network reliability

connections between two ubiquitous chips. Note that,
this time the function of these rules is limited to check
only one connection for a ubiquitous chip.

Between a pair of ubiquitous chips, the one nearer
the server becomes the parent, who repeats sending the
CHECK ALIVE message to the other ubiquitous chip
called the child by the CHECK NEXT rule. When
the child receives the message, it replies with the RE-
PLY ALIVE message (by the REPLY CHECK rule).
If the parent cannot receive this reply message, it sends
its ID to the server (by the NOTIFY DISAPPEAR
rule). When the server receives the ID, it selects the
parent as the current one and discovers the topology
of its children.

4.4 Dynamic Method
This method is suitable for environments where net-

work reliability varies from place to place. In places
with many errors and lost messages, message repeti-
tion is effective to discover correct topology. On the
other hand, such repetition is unnecessary at places of
stable networks. In a rule-based approach, we can eas-



ily solve this problem by changing rules according to
network reliability.

Here, we describe a method for solving this problem
based on the indirect method. In this method, we use
several kinds of rule sets according to network reliabil-
ity:

Case 1 (High reliability): The server adds the normal
rule set of the indirect method.

Case 2 (Slightly low reliability): The server adds an-
other rule set, shown in Table 8 (a), in which
the ubiquitous chip repeats sending the RE-
PLY UCID M message one by one. The number
of repetitions depends on the degree of reliability.

Case 3 (Low reliability): The server adds the
other rule set, shown in Table 8 (b), in which
the ubiquitous chip repeats sending the RE-
PLY UCID M message until it receives a reply
message from the current ubiquitous chip. The
server also adds a rule to the current ubiqui-
tous chip to send the message when it receives
the REPLY UCID M message. These operations
are identical to the ADVERTISE MESSAGE and
STOP ADVERTISE rules in Table 6.

Network reliability is detected by using the rules
shown in Table 8 (c). The CHECK NETWORK rule
is added to all ubiquitous chips beforehand. When
the new current ubiquitous chip is selected, the server
sends one CHECK NETWORK message to the new
ubiquitous chips that can directly communicate with
the current ubiquitous chips. When the new ubiqui-
tous chip receives the CHECK NETWORK message,
it sends a REPLY CHECK message. The server counts
the number of received REPLY CHECK messages and
repeats this operation several times. After that, the
server knows the reliability from the number of received
REPLY CHECK messages.

By dynamically selecting these rules, the server can
realize an efficient topology discovery method. More-
over, the system can also use the reliability information
in application rules.

All of these proposed methods are realized by ECA
rules, and modification of firmware is unnecessary.
Therefore, we can also easily realize new topology dis-
covery methods by replacing them.

5 Implementation
5.1 Simulator

We implemented a simulator to verify the proposed
methods. Figure 7 shows a screen shot of the simulator.
We can place ubiquitous chips on the left side of the
simulator, and the results are shown on the right side.

Figure 7. Simulator of topology discovery.

Table 9. Rule set for direct method
WAIT UCID
E:
C: S0=1
A: S0=0, T(ID × 100 ms)

REPLY MESSAGE (2 rules)
E: RM(7)
C: S0=0
A: S0=1

E: Timer
C:
A: SM M(6)

T: Setting a timer for a proportional time to its ID
RM: RECEIVE MESSAGE event
SM M: SEND MESSAGE (multihop mode) action
Message 7: REQUEST UCID message
Message 6: REPLY MESSAGE message
S0: Flag for timer

In the simulator, the wireless communication area of
the ubiquitous chip is set to a fixed range. Tables 9 and
10 show rule sets for the direct and indirect methods
respectively.

The direct method cannot discover ubiquitous chips
placed over five hops. The indirect method can dis-
cover ubiquitous chips placed within eight hops. How-
ever, the direct method operates a fourth as fast as the
indirect method, and the number of messages is 35%
to 50% as many as in the indirect method.

5.2 Verification on Prototype Devices
We also verified the direct method using actual pro-

totype devices of ubiquitous chips. Figure 8 shows two
examples of topology structures, and snapshots of veri-
fication. In this verification, we made the timer interval
in the WAIT UCID rule twice as long as that in Table
9 to prevent wireless communication reflections on the
RF modules.

In Figure 8 (a), two ubiquitous chips (IDs: 6 and 8)
within a hop can directly communicate with the server.
Although ubiquitous chips 6 and 8 received Message 7
from the server at the same time, they replied one by
one according to the WAIT UCID rule, verifying that
the server discovered the topology of these ubiquitous



Table 10. Rule set for indirect method
REPLY MESSAGES
E: RM(5)
C: S1=0
A: S1=1

RELAY MESSAGES (4 rules)
E: RM(0)
C:
A: SM M(0)

E: RM(1)
C:
A: SM M(1)

E: RM(2)
C:
A: SM M(2)

E: RM(3)
C:
A: SM M(3)

SEND MESSAGES (5 rules)
E:
C: S1=1
A: S1=0, T(ID × 500 ms)

E: Timer
C: S3=1, S4=1
A: S3=0, S4=1, SM(D)

E: Timer
C: S3=0, S4=1
A: S3=1, S4=1, SM(C), T(100 ms)

E: Timer
C: S3=1, S4=0
A: S3=0, S4=0, SM(B), T(100 ms)

E: Timer
C: S3=0, S4=0
A: S3=1, S4=0, SM(A), T(100 ms)

T: Setting a timer
RM: RECEIVE MESSAGE event
SM: SEND MESSAGE (single-hop mode) action
SM M: SEND MESSAGE (multihop mode) action
S1: Flag for the timer

Message 0 – 3: REPLY UCID M messages
Message A – D: Messages that represent ubiquitous chips
ID (actually, these are Messages 0 – 3)
Message 5: REQUEST UCID M message
S3, S4: Flag for sending messages in order.

server 6

8

(a): Topology 1

server 6 8

(b): Topology 2

Figure 8. Topologies for the verification and snap-
shots

chips.
In Figure 8 (b), there is one ubiquitous chip (ID: 6)

in the first hop and another ubiquitous chip (ID: 8) in
the second hop. Ubiquitous chip 8 sends/receives mes-
sages and commands them to/from the server through
ubiquitous chip 6. After discovering ubiquitous chip 6,
the server selected it as the current one and was able
to discover ubiquitous chip 8.

6 Considerations

6.1 Advantages of rule-based approach
We can also consider the hybrid method in which the

server uses the direct method in shorter distances than
the limit of this method and the indirect method in

longer distances. In addition, servers sometimes might
discover not mesh topology but tree topology because
of messages reduction and saving batteries.

These customizations and adaptations are required
to construct flexible applications in ubiquitous comput-
ing environments. In our approach, such customiza-
tions are easily realized by changing ECA rules, unlike
conventional methods.

On the other hand, topology discovery methods re-
alized in the firmware can be implemented in an opti-
mum way. Therefore, our approach leads to some delay
and overhead.

6.2 Related Works
MICA is a platform for wireless sensor networks

that can automatically discover network topology [6].
We can collect sensor information from MICA devices.
Moreover, many kinds of multihop networking pro-
tocols are implemented on MICA devices [5]. How-
ever, MICA cannot dynamically change the discovery
method for network topology and it cannot change its
behavior and attached devices during applications are
active. This is the different point from ubiquitous chip,
which is controlled by ECA rules.

Smart-Its is a tiny computer system to be embedded
into everyday objects [1]. In Smart-Its, no flexible net-
work topology discovery mechanism is proposed. We
believe that we can implement our topology discovery
mechanism on Smart-Its devices.

In recent years, several topology discovery meth-
ods have been proposed in the research area of ad hoc
networks, which are networks constructed temporarily
only by mobile hosts. Such topology discovery meth-
ods are divided into two types: proactive routing and
reactive routing. In proactive routings such as DSDV
[7] and OLSR [2], mobile hosts regularly exchange con-
trol messages and maintain routing information. In
reactive routing, such as AODV [8] and DSR [3], mo-
bile hosts have local routing tables and inquiry about



routing paths when sending message. Since these rout-
ing protocols require enough processing power to cal-
culate routing information and sufficient memory to
maintain routing tables, it is difficult to apply these
conventional protocols to ubiquitous chips. Moreover,
since these methods are static, the system cannot dy-
namically change their topology discovery methods.

7 Conclusion
In this paper, we proposed a rule-based topology dis-

covery mechanism for ubiquitous chips. In this mech-
anism and using our method, we can change discovery
method flexibility by modifying stored ECA rules and
develop flexible applications for ubiquitous computing
environments. We also verified our algorithm by im-
plementing it on a topology discovery simulator and
actual prototype devices of ubiquitous chips.

In the future, we plan to develop a framework
to modify application behaviors according to network
topology. We also plan to develop topology detection
and routing methods considering the electricity con-
sumption of wireless communication and actuators.

Acknowledgments
This research was supported in part by “The

21st Century Center of Excellence Program” of the
Japanese Ministry of Education, Culture, Sports, Sci-
ence and Technology.

References
[1] M. Beigl and H. Gellersen: Smart-Its: An Embedded

Platform for Smart Objects, Smart Objects Conference
(sOc) 2003, 2003.

[2] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A.
Qayyum, and L. Viennot: Optimized Link State Rout-
ing Protocol for Ad Hoc Networks, in Proc. of IEEE
INMIC 2001, 2001.

[3] D. B. Johnson and D. A. Maltz: Dynamic Source Rout-
ing in Ad Hoc Wireless Networks, in Proc. of Mobile
Computing 1996, 1996.

[4] J. Kahn, R. Katz, and K. Pister: Mobile Networking
for Smart Dust, In Proc. of ACM/IEEE International
Conference on Mobile Computing and Networking (Mo-
biCom99), pp. 271–278, 1999.

[5] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. Brewer, and D. Culler: The Emergence
of Networking Abstractions and Techniques in TinyOS,
in Proc. of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI
2004), 2004.

[6] MICA, http://www.xbow.com/products/Wireless
Sensor Networks.htm.

[7] C. E. Perkins and P. Bhagwat: Highly Dy-
namic Destination-Sequenced Distance-Vector Routing

(DSDV) for Mobile Computers, in Proc. of SIGCOMM
1994, 1994.

[8] C. E. Perkins and E. M. Royer: Ad-hoc On-Demand
Distance Vector Routing, in Proc. of WMCSA1999,
1999.

[9] K. Sakamura: TRON: Total Architecture, in Proc. of
Architecture Workshop in Japan’84, pp. 41–50, 1984.

[10] T. Terada, M. Tsukamoto, K. Hayakawa, T. Yoshi-
hisa, Y. Kishino, A. Kashitani, and S. Nishio: Ubiqui-
tous Chip: a Rule-based I/O Control Device for Ubiq-
uitous Computing, in Proc. of Pervasive2004, pp. 238–
253, 2004.

[11] M. Weiser: The Computer for the Twenty-first Cen-
tury, Scientific American, Vol. 265, No. 3, pp. 94–104,
1991.




