

A COLLABORATIVE QUERY PROCESSING METHOD
FOR A DATABASE BROADCASTING SYSTEM

Masakazu Kashita† Tsutomu Terada‡ Takahiro Hara∗ Masahiko Tsukamoto∗ Shojiro Nishio∗

†Dept. of Information Systems Eng., Graduate School of Engineering, Osaka University
‡Cybercommunity Division, Cybermedia Center, Osaka University

∗Dept. of Multimedia Eng., Graduate School of Information Science and Tech., Osaka University

Abstract
In a database broadcasting system, the server periodically
broadcasts contents of database to mobile clients such as
portable computers and PDAs. In this system, there are
two possible methods for query processing: one is that a
client stores all data which are necessary for processing a
query and then processes it locally, and the other is that the
server processes a query and broadcasts the query result to
the query issue client. However, a client cannot get query
results when the disk space of the client is not enough for
query processing in the former method or when overfull
queries are issued in the latter method. In this paper, to
resolve these problems, we propose a method which pro-
cesses a query by collaboration of the server and clients. In
our method, the server adds identifiers to tuples appearing
in the query result. Thus, the client can store only necessary
tuples by referring to the identifiers. In addition, the server
broadcasts rules which define the client’s behavior for re-
ceiving data, and then, the query results are constructed on
the client by using the rules. In this way, clients can get
query results efficiently.

Key Words
Database broadcasting, ECA rule, Query processing, Mo-
bile environment

1 Introduction

The recent evolution of wireless communication technolo-
gies has led to an increasing interest in information sys-
tems in which data is disseminated via broadcast chan-
nels. In such systems, a server broadcasts various data pe-
riodically via a broadband channel, and a client picks out
and stores necessary data. Since the data delivery cost of
the server little increases even if the number of clients in-
creases, the server can disseminate data with high quality
and high throughput independent of the number of clients.

Many researches have been done so far to improve the
performance of data broadcasting systems. They include
data scheduling techniques at the server side [1, 4, 7, 8, 9,
10], caching techniques at the client side [1], update prop-
agation techniques[2], integration of push-based and pull-
based techniques[3], and data pre-fetching techniques[5].

Most of them deal with broadcast data only as adata item,
which is a collection of data, and do not address perfor-
mance improvement by considering contents, characteris-
tics and types of broadcast data. However, since there are
various types of data such as hyper-link texts and tuples of
relational database, data processing considering data types
is very important to improve system performance.

In this paper, we assume a data broadcasting system in
which a server broadcasts contents of a relational database
and clients issue database queries to retrieve data from the
database. We call such a system adatabase broadcasting
system. The goal of this paper is to realize efficient query
processing in a database broadcasting system. We propose
a query processing method in which the server and a client
collaboratively process queries. This method reduces re-
sponse time, and disk space required for query processing.

The remainder of this paper is organized as follows:
In section 2, we explain a database broadcasting system
and two basic methods for query processing. In section 3,
we describe our proposed collaborative query processing
method. In section 4, we evaluate the performance of our
method. In section 5, we conclude this paper.

2 Database Broadcasting System

In this section, we explain a database broadcasting system
and basic query processing methods in a database broad-
casting system, which we call theclient methodand the
on-demand method.

Figure 1 shows the concept of a database broadcast-
ing system. The server broadcasts contents of a relational
database via a broadcast channel and clients issue a query
to retrieve necessary data from the database. We also put
the following assumptions:

Contents: The server periodically broadcasts contents of
a relational database.

Clients: Clients have a small disk storage, low battery,
and low CPU power.

Dual downlink channels: The broadcast channel from
the server to clients is divided into two channels. The

tsutomu
Proc. of IASTED International Conference on Communications, Internet, and Information Technology (CIIT 2002) (Nov. 2002)

tsutomu
60

Uplink

Clients

Main
Channel

Sub
Channel

Server

Table A B C

D

EF..
.

.

Figure 1. A database broadcasting system.

contents of the database are broadcast via the broad-
bandmain-channeland other data is broadcast via the
narrow-bandsub-channel.

Uplink channels: There is a narrow-band communication
channel from a client to the server.

There are two basic methods for query processing in
a database broadcasting system.

Client method: A client stores all broadcast tables that
are necessary for processing the query. Then, the
client processes the query using the stored tables.

On-demand method:A client sends a query to the server
via the uplink. The server processes the received
query and sends the query result back to the client via
the sub-channel.

In the following, we explain the both methods in de-
tail.

2.1 Client method

The processing procedure in the client method is as fol-
lows:

1. A client issues a query described in SQL.

2. The client monitors the main-channel, and stores
broadcast tables which are necessary for processing
the query on its disk.

3. The client processes the query after all the necessary
tuples are stored.

In this method, even if the number of clients that issue
queries heavily increases, every client can receive all nec-
essary data within one broadcast cycle. Moreover, since
a client gets the query result without using the uplink, the
client method can work in an environment where there is
no uplink. However, this method has the following disad-
vantages:

…D4

E

C

B

A

…5

…3

…2

…1

204

455

153

102

301

15C

10B

X Y
Attri-2Attri-1ID Attri-3ID

Y.Attri-3X.Attri-1

The accumulated data on the client

X.Attri-1 , Y. Attri-3
X, Y
X.ID = Y.ID
Y.Attri-3 <= 15

SELECT
FROM
WHERE
AND

The query result

Figure 2. Query processing in the client method.

Large disk space consumptionSince a client has to store
all necessary tables for processing the query, there is
the possibility that the client does not have enough
disk space. For example, suppose that the server
broadcasts a database consisting of tablesX and Y,
and a client issues a query as shown in Figure 2. In
this case, the client firstly stores the tablesX andY on
the local disk, and then, processes the query. The gray
areas in the tables show tuples that appear in the query
result. Therefore, the client wastes the local disk space
to store unnecessary tuples and attributes that do not
appear in the query result.

High processing cost

Query processing imposes a heavy load to a mobile
client that has low computational power, and thus,
it may occupy most of the client’s work. Moreover,
since the processing cost changes according to the
complexity of the query, it is difficult to expect the
impact on the client.

2.2 On-demand method

The processing procedure in the on-demand method is as
follows:

1. A client issues a query and sends it to the server via
the uplink.

2. The server processes the query and broadcasts the
query result via the sub-channel.

3. The client receives the query result.

In the on-demand method, since the query processing
is completely done by the server and a client receives only
the query result, the client needs no work space for query
processing. When there is no waiting query to be processed
at the server, a client can receive the query result immedi-
ately. However, since the sub-channel is exhausted when
queries are issued frequently or when the size of query re-
sults is very large, it takes long time for the client to receive
the query result.

3 Collaborative Method

As described in the section 2, there is the possibility that
queries cannot be processed in the client method and that

tsutomu
61

it takes long time to get the query result in the on-demand
method. To solve these problems, we propose thecollab-
orative methodfor efficient query processing in a database
broadcasting system. In this section, we explain our pro-
posed method.

3.1 Overview

The collaborative method reduces the disk space required
for query processing as compared with the client method,
and reduces the response time as compared with the on-
demand method. This is accomplished by processing a
query collaboratively by the server and a client. The fol-
lowings are characteristics of the collaborative method:

Server assistance of query processing:The server anal-
yses a query received from a client and adds identi-
fiers to tuples that appear in the query results. Since
the client can store only the necessary data referring
to the identifiers, the disk space required on the client
is reduced.

Specification of client’s behaviors by rules:The server
creates rules which specify how a client receives and
processes the broadcast data, and sends them via the
sub-channel. Based on the received rules, a client au-
tomatically receives necessary tuples and reconstructs
the query result. Since the size of a rule is gener-
ally much smaller than that of a query result, the sub-
channel is rarely exhausted as compared to the on-
demand method.

3.2 ECA rule

In the collaborative method, rules are used to specify the
behaviors of clients. As the description formula, we use
theECA rulewhich is a behavior definition language in ac-
tive database systems. An active database system processes
prescribed actions in the response to the occurrence of an
event generated inside/outside of databases[6]. An ECA
rule consists ofEvent, Condition, andAction. Event is the
occurring event in the system, Condition is the condition
to execute actions, and Action is the operation to be per-
formed when the conditions are satisfied. The use of ECA
rules for specifying clients’ behaviors brings the following
advantages:

• Since system behaviors are specified in the event-
driven manner, query processing can be represented
as a collection of rules, which specify the behaviors
on receiving data, processing received tuples, and so
forth.

• Since all functions on query processing are repre-
sented as a set of rules, they can be easily customized
by updating, adding, and deleting ECA rules.

Events and actions that can be used in our method are
shown in Table 1 and Table 2. Additionally, we provide

Table 1. Events.

Name Event
SELECT Retrieval of data from a table
INSERT Insertion of tuples into a table
DELETE Deletion of tuples from a table
UPDATE Update of tuples in a table
RECEIVE Arrival of data
TIMER Activation of a specified timer

Table 2. Actions.

Name Action
QUERY([query]) Operation to the database
ENABLE ECA([Rule ID]) Activation of rules
DISABLE ECA([Rule ID]) Deactivation of rules
INSERT ECA([Rule ID]) Storage of rules
DELETE ECA([Rule ID]) Deletion of rules
SET TIMER([Condition of a timer], Setting of a new timer

[Time])
KILL TIMER([Timer ID]) Deletion of a timer
STORE([Query ID],[Table name], Storage of tuples

[Table name], [Attribute], ...)
MATCH([Query ID],[Table name], Storage of tuples in com-

[Matching table name],[Attribute], ...) bining with stored ones
DISPLAY([Query ID]) Display of a query result

two system variables,NEW dataandOLD data. When an
event occurs, the system variables are set to certain values
according to Table 3, and they can be used in describing
rules.

3.3 Query processing algorithm

The query processing procedure in the collaborative
method is as follows:

1. Query initiation and transmission

A query is issued by a client and it is sent to the server
via the uplink.

2. Addition of identifiers

It is assumed that each tuple in the broadcast database
has two extra attributes for thequery identifierand
the combination identifier. The query identifier is a
unique identifier that is given by the server to each
query. The combination identifier is an identifier to
match tuples when a query result is constructed from
multiple tables, such as the case of a join operation.
The server analyzes the received query and investi-
gates which tuples appear in the query result. Then,
the server adds the query identifier and the combina-
tion identifier in those tuples. Referring to the two
attributes, the client can store only tuples appearing in
the query result. Since each of the two attributes has
a capacity to store several identifiers at the same time,
the system can process several queries in one broad-
cast cycle even if some tuples appear in the results of
more than one query.

3. Creation of ECA rules

tsutomu
62

Table 3. NEW data and OLD data.

Event NEW OLD
SELECT Referenced tuples -
INSERT Inserted tuples -
DELETE - Deleted tuples
UPDATE Updated tuples Old tuples
RECEIVE Contents of arrived packet -

TIMER Timer identifier -

SELECT
FROM

WHERE
AND

X.Attri-1 , Y. Attri-2
X, Y
X.ID = Y.ID
Y.Attri-2 <= 15

SELECT
FROM

WHERE
AND

X.Attri-1 , Y. Attri-2
X, Y
X.ID = Y.ID
Y.Attri-2 <= 15

Figure 3. A query example.

The server creates ECA rules for clients to receive the
necessary data and reconstructing the query result on
the client. Several templates for typical ECA rules
are provided for efficient rule description. If possible,
the server creates ECA rules by setting query parame-
ters to the templates. Otherwise, it creates rules com-
pletely by itself. The server also creates ECA rules
for tuning the main-channel only when the necessary
tuples are broadcast. This enables clients to shorten
the monitoring time, and thus, reduce the power con-
sumption.

4. Broadcast of ECA rules

The server broadcasts the ECA rules via the sub-
channel. The client continues to monitor the sub-
channel until the necessary ECA rules are broadcast,
and then, receives and stores them.

5. Reconstruction of query result

Based on the received ECA rules, the necessary tu-
ples are received and the query result is automatically
reconstructed by combining these tuples.

6. Release of identifiers

The server expects the time when the client completes
to receive the necessary tuples, and after the time, it
releases all the identifiers added for the query issued
by the client.

3.4 Query example

We show an example of query processing. Let us sup-
pose that a client issues a query shown in Figure 3, and
the server assigns a query identifier to the query as 3. As
shown in Figure 4, the server investigates tuples which ap-
pear in the query result and writes the number 3 in the at-
tribute for query identifier, QID, on these tuples. Then, as
shown in Figure 5, the server investigates pairs of tuples
that are combined to reconstruct the query result and writes
the combination identifiers in the attribute, CID, on these
tuples.

Finally, the server creates ECA rules and sends them
to the clients. In this example, the set of created ECA rules

3

3

D

C

B

A

4

3

2

1

3

3

D

C

B

A

4

3

2

1

3

3

204

153

102

301

3

3

204

153

102

301

15C

10B

15C

10B

X Y

Query resultAttri-1IDC_IDQ_ID Attri-1IDC_IDQ_ID

Y.Attri-2X.Attri-1 Y.Attri-2X.Attri-1

Attri-2IDC_IDQ_ID Attri-2IDC_IDQ_ID

Figure 4. Addition of query identifiers.

3

3

2

1

D

C

B

A

4

3

2

1

3

3

2

1

D

C

B

A

4

3

2

1

3

3

2

1

204

153

102

301

3

3

2

1

204

153

102

301

X Y
Attri-1IDC_IDQ_ID Attri-1IDC_IDQ_ID Attri-2IDC_IDQ_ID Attri-2IDC_IDQ_ID

Figure 5. The addition of combination identifiers.

is shown in Figure 6. ‘Rule3-1’ is a rule for creating a table
for storing the query result. ‘Rule3-2’ and ‘Rule3-3’ are for
setting a timer to trigger the rule for displaying the query
result. ‘Rule3-4’, ‘Rule3-5’, ‘Rule3-6’, and ‘Rule3-7’ are
for receiving the broadcast data. ‘Rule3-8’ and ‘Rule3-9’
are for displaying the query result, and delete all rules and
timers.

4 Evaluation

In this section, we evaluate our method by comparing with
the two basic methods from the following three points of
view:

1. Disk space consumption

The disk space is required by a client to process a
query. Note that this does not include the space for
storing the query result.

2. Response time

The elapsed time from the query initiation to the re-
ceipt of the query result.

3. Tuning time

The time during when a client listens the broadcast
channels.

4.1 Evaluation model

In this evaluation, we choose the database schema and the
query model assuming an information service in a shopping
center. In this service, the server broadcasts the information
on shops, goods and so forth. Clients equipped with PDAs
walk around and receive the broadcast data. The clients is-
sue queries that request data including images, e.g., ‘I want
images ofgoods Aand the name list of shops which deals
in it’.

There are two tables for each of genres such as ap-
parel, interior, and restaurant; one of the tables is a shop
table{shopID, shop name, image} and the other is a goods
table{goodsID, shopID, goods name, image}. The shop

tsutomu
63

tsutomu

E : TIMER
C : New.ID = “Timer3-1”
A : ENABLE_ECA(“Rule3-4”, “Rule3-7”)

DELETE_ECA(“Rule3-2”, “Rule3-3”)
SET_TIMER(“Timer3-3”, 200)

Rule3-2

E : RECEIVE
C : Now.minutes > 50

Now.minutes < 70
New.SQL_ID = 3

A : STORE(3, “X”, New. Attri-1)

Rule3-3

Rule3-4

E : TIMER
C : New.ID = “Timer3-2”
A : ENABLE_ECA(“Rule3-5”, “Rule3-6”)

DELETE_ECA(“Rule3-2”, “Rule3-3”)
SET_TIMER(“Timer3-4”, 70)

E : RECEIVE
C : Now.minutes > 50

Now.minutes < 70
New.SQL_ID = 3

A : MATCH(3, “X”, “Y”, New. Attri-1)

Rule3-5

Rule3-6

E : RECEIVE
C : Now.minutes > 195

Now.minutes < 200
New.SQL_ID = 3

A : STORE(3, “Y”, New.Attri-2)

E : TIMER
C : New.ID = “Timer3-3”
A : DISPLAY(3)

DELETE_ECA(“Rule3-*”)
KILL_TIMER(“Timer3-*”)

Rule3-7

Rule3-8

E : RECEIVE
C : Now.minutes > 37

Now.minutes < 39
New.SQL_ID = 3

A : MATCH(3, “Y”, “X”, New. Attri-2)

E : TIMER
C : New.ID = “Timer3-4”
A : DISPLAY(3)

DELETE_ECA(“Rule3-*”)
KILL_TIMER(“Timer3-*”)

Rule3-9

E : RECEIVE
C :
A :SET_TIMER(“Timer3-1”, 7)

SET_TIMER(“Timer3-2”, 37)
QUERY(“Create Table ‘3’ (X.Attri-1 character (10),

Y.Attri-2 character (10))”)
DELETE_ECA(“Rule3-1”)

Rule3-1

Figure 6. Created ECA rules.

Table 4. Parameters.
Name Content Value
g Number of genres 10
n Number of shops per a genre 40
t Number of goods per a shop 100
s Size of a tuple[Bytes] 5000
i Max number of identifiers per a tuple 100
bm Bandwidth of the main-channel[Mbps] 10
bs Bandwidth of the sub-channel[Mbps] 1
sq Size of a query[Bytes] 100
d Interval of query initiation[second] 1 – 20
r Tuple usage rate[%](the rate of 5

tuples in a goods table included in a query result)
se Size of a ECA rule[Bytes] 140

table has the attributes ‘shopID’ as the primary key, the
shop name, and the map image. The goods table has the
attributes ‘goodsID’ as the primary key, the goods name,
the identifier of the shop which deals in the goods, and the
graphical image of the goods.

A query is described in SQL. For the sake of simplic-
ity, we suppose all tables are of the same size. Moreover,
a client issues only natural join queries with the shop table
and the goods table in the same genre.

Table 4 shows parameters and their values used in this
evaluation. These values are based on the case of a real
shopping center.

4.2 Disk space consumption

In this section, we evaluate the disk space consumption in
each of the three methods. The disk space consumptions in
the three methods are expressed by the following formulas:

• Client method:Dcli = sn (t + 1)

• On-demand method:Don = 0

• Collaborative method:Dcol = sn (tr/100 + 1)

In the client method, since a client has to store all ta-
bles required for processing the query, the disk space con-
sumption is the total size of all tables. In the on-demand
method, since the query result itself is broadcast, no work
space is needed on the client. In the collaborative method,
the disk space consumption is calculated by multiplying the
size of a goods table by thetuple usage rateand adding the
size of a shop table to it. Although the rates of tuples in
goods and shop tables that appear in the query result de-
pend on the query, for the sake of simplicity, we suppose
that the rate in a shop table is 1 and that in a goods table is
r.

Figure 7 shows the disk space consumption in each of
the three methods when changing the tuple usage rate. The
tuple usage rate has no impact on the disk space consump-
tion in the client method, because all tables related to a
query are stored on the client. In the collaborative method,
the disk space consumption linearly increases as the tuple
usage rate gets higher. It is shown that when the tuple us-
age rate is low, the collaborative method can greatly reduce
the disk space consumption as compared with the client
method. Even in the worst case, it gives the same disk
space consumption as the client method. When the tuple
usage is lower than 5%, the disk space consumption in the
collaborative method is lower than 1MByte. Thus, a client
with low memory space of 10MByte such as a PDA, cannot
store all the necessary tables in the client method, but can
store all the necessary data in the collaborative method.

4.3 Response time

The response time in each of the three methods is repre-
sented by a formula described in Appendix. Figure 8 shows
the response time when changing the interval of query ini-
tiation. The client method is not affected by the interval of
the query initiation. In the on-demand method and the col-
laborative method, as the interval of query initiation gets
shorter, the response time gets suddenly longer from cer-
tain points. We call these points thequery interval lim-
its. This result shows that the sub-channel is exhausted
at the query interval limits. The response time in the col-
laborative method is a little longer than that in the client
method where the interval of query initiation is longer than
the query interval limits. This is because the broadcast data
size increases due to the growth of the total size of identi-
fiers. The query interval limit in the collaborative method is
much shorter than that in the on-demand method, because
the size of ECA rules is much smaller than that of query re-
sults. This shows that the collaborative method works well
even when queries are frequently issued. However, the re-
sponse time of the on-demand method is very short when
the query initiation frequency is low.

Figure 9 shows the response time when changing the
tuple usage rate, r. The response time of the on-demand

tsutomu
64

method is heavily affected by the tuple usage rate. As the
tuple usage rate gets larger, the size of query results gets
larger, and thus, the response time and the query interval
limit get longer. The response times of the other methods
are not affected by the tuple usage rate.

Figure 10 shows the impact of the max number of
identifiers in a tuple,i, on the response time of the col-
laborative method. As the max number of identifiers gets
larger, the query interval limit of the collaborative method
gets shorter.

Figure 11 shows the impact of the bandwidth of the
sub-channel,bs, on the response time. As the bandwidth of
the sub-channel gets larger, in the on-demand method, the
response time becomes shorter because query results can
be sent in a short time. Moreover, since the sub-channel
are hardly exhausted the query interval limit gets shorter.

4.4 Tuning time

We evaluate the tuning time in each method. The tuning
time in each method is represented by a formula described
in Appendix. Figure 12 shows the tuning time when chang-
ing the interval of query initiation.

It is shown that the tuning times in the client method
and the collaborative method are much shorter than the re-
sponse times shown in Figure 8. This is because clients
can know when the necessary tuples appearing in the query
result will be broadcast by using the index in the client
method or by using the ECA rules in the collaborative
method. However, in the on-demand method, since the
client must keep watching the sub-channel until the query
result is broadcast, the tuning time is equivalent to the re-
sponse time.

5 Conclusion

In this paper, we proposed the collaborative method for ef-
ficient query processing in a database broadcasting envi-
ronment. The proposed method reduces the client’s disk
space required for query processing as compared with the
client method, and the response time as compared with the
on-demand method.

As part of our future work, we plan to implement a
system based on our method and perform an evaluation in
a real environment. Moreover, we will address a mech-
anism to automatically select the best method among the
client method, the on-demand method, and the collabora-
tive method according to changes of a system situation.

Acknowledgments

This research was supported in part by Grant-in-Aids for
Scientific Research on Priority Areas numbered 14019063
from Japan Society for the Promotion of Science.

References

[1] S. Acharya, M. Franklin, and S. Zdonik: “Broadcast
Disks: Data Management for Asymmetric Communi-
cation Environments,”Proc. ACM SIGMOD, pp. 199–
210 (1995).

[2] S. Acharya, M. Franklin, and S. Zdonik: “Disseminat-
ing Updates on Broadcast Disks,”Proc. VLDB Confer-
ence, pp. 354–365 (1996).

[3] S. Acharya, M. Franklin, and S. Zdonik: “Balancing
Push and Pull for Data Broadcast,”Proc. ACM SIG-
MOD, pp. 183–194 (1997).

[4] D. Aksoy, and M. Franklin: “Scheduling for Large-
Scale On-Demand Data Broadcasting,”Proc. IEEE IN-
FOCOM, pp. 651–659 (1998).

[5] D. Aksoy, M. Franklin and S. Zdonik: “Data Staging
for On-Demand Broadcast,”Proc. VLDB Conference,
pp. 571–580 (2001).

[6] G. Lohman, L. Bruce, P. Hamin, and K. Bernhard, “Ex-
tentions to Starburst: Object, Types, Functions, and
Rules,”Communications of the ACM, vol. 34, no. 10,
pp. 94–109 (1991).

[7] E. Yajima, T. Hara, M. Tsukamoto, and S. Nishio: “In-
terval Optimization of Correlated Data Items in Data
Broadcasting,”Proc. of Int’l Conf. on Advances in In-
formation Systems (ADVIS 2000), pp. 127–136 (2000).

[8] E. Yajima, T. Hara, M. Tsukamoto, and S. Nishio:
“Scheduling Strategies of Correlated Data in Push-
Based Systems,”Information Systems and Operational
Research (INFOR), pp. 152–173 (2001).

[9] E. Yajima, T. Hara, M. Tsukamoto, and S. Nishio:
“Scheduling and Cashing Strategies for Broadcasting
Correlated Data,”Proc. ACM Symposium on Applied
Computing (ACM SAC 2001), pp. 504–510 (2001).

[10] Q. Hu, D. Lee, and W. Lee: “Performance evaluation
of a wireless hierarchical data dissemination system,”
Proc. MobiCom’99, pp. 163–173 (1999).

Appendix

The response time and the tuning time are expressed using
the parameters in Table 4. We use the following notations
which are represented by formulas (1) to (10).

S =
2tnsr

100
(1)

Ccli =
8(t + 1)ngs

bm
(2)

Ccol =
(8s + (2blog2(tn)c+ 1) i) (t + 1)ng

bm
(3)

Dcol =
72se

bs
(4)

tsutomu
65

0

5

10

15

20

25

0 50 100

Tuple used rate [%]

D
is

k
 s

p
a

c
e
 c

o
n

su
m

p
ti

o
n

 [
M

B
y

te
]

client

on-demand

collaborative

Figure 7. The tuple usage rate vs. the
disk space consumption.

0

50

100

150

0 5 10 15 20

Interval of query initiation[s]

R
e
sp

o
n

se
 t

im
e
 [

s]

client

on-demand

collaborative

Figure 8. The interval of query initiation
vs. the response time.

0

50

100

150

0 5 10 15 20

Interval of query initiation[s]

R
e
sp

o
n

se
 t

im
e
 [

s]

client

on-demand

(r=0.5)

on-demand

(r=1)

on-demand

(r=5)

collaborative

Figure 9. The interval of query initiation
vs. the response time when changing the
tuple usage rate.

0

50

100

150

0 5 10 15 20

Interval of query initiation[s]

R
e
sp

o
n

se
 t

im
e
 [

s]

client

on-demand

collaborative

(i=50)

collaborative

(i=100)

collaborative

(i=200)

Figure 10. The interval of query initia-
tion vs. the response time when chang-
ing the max number of identifiers.

0

50

100

150

0 5 10 15 20

Interval of query initiation[s]

R
e
sp

o
n

se
 t

im
e
 [

s]
client

on-demand (bs=1)

on-demand (bs=2)

on-demand (bs=5)

collaborative (bs=1)

collaborative (bs=2)

collaborative (bs=5)

Figure 11. The interval of query gener-
ation vs. the response time when chang-
ing the bandwidth of the sub-channel.

0

50

100

150

0 5 10 15 20

Interval of query initiation[s]

T
u

n
in

g
 t

im
e
 [

s]

client

on-demand

collaborative

Figure 12. The interval of query initia-
tion vs. the tuning time.

Table 5. Notations for formulation.
Notation Meaning
S Size of a query result[Bytes]
Ccli Broadcast cycle(client method)[second]
Ccol Broadcast cycle(collaborative method)[second]
Qcol Time until receiving of ECA rules

(collaborative method)[second]
Qon Time untill receiving of a query result

(on-demand method)[second]
Dcol Time for receiving ECA rules

(collaborative method)[second]
Don Time for receiving a query result

(on-demand method)[second]
Rcol Time for receiving broadcast data

(collaborative method)[second]
Rcli Time for receiving broadcast data

(client method)[second]

Don =
8S

bs
(5)

F (g, t) =
1

g

(
g2 − 1

2g
+

t2 + 1

2g(t + 1)2
+ 1

)
(6)

Rcol = CcolF (g, t) (7)

Rcli = CcliF (g, t) (8)

Qcol =





∞
(

0 < d < max

[
Rcol

i
, Dcol

])

0

(
max

[
Rcol

i
, Dcol

]
≤ d

) (9)

Qon =





∞
(

0 < d <
8S

bs

)

0

(
8S

bs
≤ d

) (10)

Table 6. Response time and tuning time.

Name Content
Acli Response time(client method)[second]
Acol Response time(collaborative method)[second]
Aon Response time(on-demand method)[second]
Tcli Tuning time(client method)[second]
Tcol Tuning time(collaborative method)[second]
Ton Tuning time(on-demand method)[second]

In formulas (9) and (10), when the processing rate at
the server is lower than the query initiation frequency, the
times become very long, and thus, they are expressed by
the infinite value.

Using formulas (1) to (10), the response time and the
tuning time (Table 5) in each of the three methods are rep-
resented by formulas (11) to (16). For the sake of simplic-
ity, we neglect consider the time for sending a query to the
server and the computed time for a query processing at a
client.

Acli = Rcli (11)

Aon = Qon + Don (12)

Acol = Qcol + Dcol + Rcol (13)

Tcli =
Ccli

g
(14)

Ton = Qon + Don (15)

Tcol = Qcol + Dcol +
Ccol

g
(16)

tsutomu
66

