
An On-site Programming Environment
for Wearable Computing

Shotaro Akiyama
Grad. School of Engineering,

Kobe University
1-1, Rokkodaicho, Nada,

Kobe, Hyogo
657-8501, Japan

s-akiyama@stu.kobe-
u.ac.jp

Tsutomu Terada
Grad. School of Engineering,

Kobe University
and JST PRESTO

1-1, Rokkodaicho, Nada,
Kobe, Hyogo

657-8501, Japan
tsutomu@eedept.kobe-

u.ac.jp

Masahiko Tsukamoto
Grad. School of Engineering,

Kobe University
Institute for Clarity in

Documentation
1-1, Rokkodaicho, Nada,

Kobe, Hyogo
657-8501, Japan

tuka@kobe-u.ac.jp

ABSTRACT
In wearable computing environments, it is difficult for users
to prepare applications that are used beforehand since there
are various situations and places. Therefore, they want
to define new services by themselves. In this study, we
present a development framework and several tools for de-
veloping services in wearable computing environments. The
framework consists of an event-driven rule processing en-
gine and service implementation tools, which enable users
to program services easily and quickly. The proposed sys-
tem shows elements of event-driven rules as chips, and we
can program services by selecting chips on graphical user
interfaces. In addition, the proposed system has two func-
tions considering programming features on wearable com-
puting: genetic-algorithm-based programming and social-
network-based programming.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Human Factors

Keywords
Wearable Computing, Programming, Context Awareness

1. INTRODUCTION
The downsizing of portable computers has attracted a

great deal of attention in the field of wearable computing.
Wearable computing provides effective and attractive ser-
vices compared with the use of conventional desktop/mobile
devices. People’s daily lives can be improved by wearable

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
AH ’12, March 8-9, 2012, Meg„eve, France.
Copyright 2012 ACM 978-1-4503-1077-2/12/03 ...$10.00.

computing technologies because wearable computers have
detailed information about their users. However, to provide
services that are highly personalized, the system needs new
models for constructing services and for programming.

We focused on real-world end-user programming in this
research. Users of wearable computers frequently want to
construct trivial services. For example, when someone in a
bookstore wants to buy a book but does not have enough
money, he/she wants to construct a reminder service, e.g.
“Alert me to buy it when I’m next near the bookstore”. In
this definition, the condition (near the bookstore) and the
action (alerts to buy the book) should be defined dynami-
cally at the site where he/she came up with the idea of the
service. Therefore, wearable systems need a mechanism that
will describe services on site. Moreover, for these services to
be advantageous to the general public who are not familiar
with programming, the system needs to provide an interface
enabling them to implement services easily.

In this study, we propose an On-site Development Tool for
defining context-aware services easily and quickly. The pro-
posed system employs a simple model where the user selects
elements of event-driven rules with simple operations to de-
fine a new service. We named the elements ”chips”. More-
over, the proposed system has three functions considering
the characteristics of programming in wearable computing.
One is a function to predict chips that will be selected based
on the users’ input history and change the presentation or-
der of chips. Another is a function to present new services
using a genetic algorithm from the existing services. The
other is a function to get services from other users who are
friends on social networks.

The remainder of this paper is organized as follows. We
introduce related work in Section 2, and Section 3 describes
the design of the proposed system. Section 4 describes the
implementation of the system and Section 5 presents the
conclusion and planned future work.

2. RELATED STUDY
There are already many proposed methods, called visual

programming, that do not require a large amount of text
input. For example, ESPranto SDK[7] enables the user to
program the system including the tangible interface by op-
eration of the GUI. LEGO MINDSTORMS[1] is a visual
programming environment that enables the user to define

the behaviors of robots. Viscuit[4] enables users to program
animations by rules graphically drawn. Scratch[2] is an en-
vironment to learn programming for children, and Squeak
eToys[3] is a programming system using tiled scripts. These
studies, however, aim for convenience by visualization, ease
of operation by GUI, and teaching programming. They have
a different purpose from ours, which is discussing program-
ming in wearable computing environments.

3. SYSTEM DESIGN
In this study, programming a service anywhere and any-

time is called “On-site programming”. Below are examples
of programming on site.

• At a conference, there are many unacquainted peo-
ple. I define a service that detects my shaking hands
gesture and takes a photo with a wearable camera au-
tomatically to help put faces to names.

• Someone wants to display a map for a destination on
an HMD when they go on a trip. Since it is annoying
to always display the map, they construct a service
where the map is only shown on the HMD when they
are standing.

• Since sitting for many hours is not healthy, someone
can implement a service that reminds him/her to have
a brisk workout every two hours.

• Since people often forget where they put their cell
phone, they can construct a service to remember where
and when they last removed it from their pocket.

Note that we define services as parts of applications on a
wearable computer. To accomplish this kind of service pro-
gramming in wearable computing environments, the system
needs to fulfil four requirements:
(1) Event-driven programming model
In the above programming, generally we use some events
(e.g. when the user shakes hands or when the user is near
a book store) as a trigger and do some action (e.g. take a
photo or show us a reminder). This means that event-driven
architecture is suitable for describing services for wearable
computing. Since complex descriptions are not suited to
on-site programming, we should use a simple but flexible
model.
(2) Dynamic modifications to services when system is run-
ning
It is important to continue the system even when new ser-
vices are installed. Users in on-site programming environ-
ments frequently add, delete, or modify services. However,
there are important services running in the system, such as
a service for sensing vital information.
(3) Simple Operation
Since we suppot end-user programming for wearable com-
puting, the user may not be familiar with programming and
hardware management. It is important to minimize user
input and simplify the programming.
(4) Service development using existing services
Services in wearable computing are strongly related to hu-
man daily life, and many users need similar but slightly
different services. This means most services are similar to
existing services made by the user or other people.
To fulfill these requirements, our system consists of Wear-

able Toolkit[6] and an On-Site Development Tool.

� �
DEFINE TakePhoto
WHEN CONTEXT˙RECOGNIZED
IF GLOBAL.CONTEXT==’shakehands˙start’

THEN DO MM˙GET˙IMAGE()� �
Figure 1: An example of ECA rule

Figure 2: Rule definition mode

3.1 Wearable Toolkit
Wearable Toolkit fulfills Requirements 2 and 3. The rule

engine, a core part of the toolkit, works as middleware for
the OS, and it manages wearable devices via plug-ins to en-
able flexible configuration of devices. Services are described
as a set of event-driven rules to make services autonomous
and simple.

All services are represented as a set of ECA(event, con-
dition, and action) rules, which is a behaviour-description
language in database systems. Each ECA rule consists of
three parts: an event, a condition, and an action. The first
describes an event occurring in the system, the second de-
scribes the conditions for executing actions, and the third
describes the operations to be carried out. By using rules,
we can configure services flexibly and simply by dynami-
cally adding, deleting, or modifying rules. Moreover, since
actions can generate new events, complex behaviours can be
achieved by chaining ECA rules. These characteristics fulfill
requirements 1 and 2.

3.2 On-site Developing Tool
On-site Developing Tool shows chips, which mean an event,

condition, or action, or a combination of them. The user
programs a service by selecting the necessary chips on the
GUI as shown in Figure 2. The tool provides easy and intu-
itive operations for rule definition, and also has the function
of defining rules using genetic algorithms and social net-
works. These characteristics fulfill requirements 3 and 4.
The tool has three modes: rule definition mode, genetic al-
gorithm mode, and social network mode. We can switch
mode by a long press on the up or down cursor keys.

Figure 2 shows a rule definition interface. The chip cur-
rently selected is shown a little bigger than others (1⃝ in
the figure). Chips that can be used with the rule are listed
at the bottom of the screen (2⃝). We can change the type
of chips (event, condition, or action) with the up or down

Figure 3: Context definition tool

cursor keys, and choose a chip with the right or left cursor
keys. The Enter key confirms the chip (3⃝), and we mod-
ify the parameters by cursor keys or character keys (4⃝) if
the selected chip has the parameters. After selecting all the
chips we need, we define the ECA rule by a long press of
the Enter key. At the same time, the defined rule is shown
in the line of the event chip as a combination of chips, to be
used or modified afterwards. The operation of arranging a
chip or outputting a rule can be undone or redone by a long
press of the left or right cursor keys.
To implement the services on site, the system should pro-

vide a function where a user can define a new context as an
event. We present a context definition tool to resolve the
difficulty with defining contexts. Figure 3 shows a snapshot
of the tool, where the acquired sensor data are shown at the
left in real time. The user directly selects the window size in
this area when defining a context, and he/she selects one or
multiple characteristic values from the list on the right-hand
neighbor. The defined context automatically appears as a
new chip on the tool.
Figure 4 shows an example of defining a rule “When the

user makes the gesture of shaking hands, the system takes
a photo.” To define this rule, firstly the user registers the
gesture of shaking hands in the context tool by actually
doing the gesture (Figure 4(a)). Secondly, he/she selects an
event chip that was added by the previous operation (Figure
4(b)). Next, since the condition chip is not necessary in this
case, he/she chooses an action chip of taking a photo (Figure
4(c)). Finally, he/she outputs the rule (Figure 4(d)).

3.3 Chip sorting
At the stage of rule definition, the display order of chips

strongly affects the efficiency of programming. Therefore,
our system has a function to sort chips in accordance with
the history of rule definitions for minimizing the operations
to define a new rule. Concretely, the system has variables for
storing the frequency of usage based on an n-gram model.
For example, if a user registers a rule using Event E1, Con-
dition C1, and Action A1, the system increases the score of
3-gram E1 → C1 → A1, 2-gram E1 → C1, E1 → A1, and
C1 → A1. When the user is making a new rule, the system
displays chips in order of n-gram scores in accordance with
the current input of the rule (e.g. when the user selects E1,
C1 and A1 will be displayed as high priority). This sorting
is performed at every user input.

3.4 Genetic algorithm mode

(a) register the ges-
ture

(b) select an event
chip

(c) select an action
chip

(d) output an ECA
rule

Figure 4: rule definition steps

Figure 5: Genetic algorithm mode

In on-site programming, there are many cases where a
new service is partially the same as the previously defined
services. In other words, if a user makes a rule with a specific
event, he/she tends to make another rule with the same
event. For example, if a user makes a rule to take a photo
on shaking hands, the rule to record the current position
with the same event is also useful to him/her.

Therefore, we propose a service definition mode using ge-
netic algorithms as shown in Figure 5. In this mode, the
system shows chips that are already defined in upper area
(1⃝). By pushing button (3⃝), the system generates new
rules in the lower area based on a genetic algorithm (2⃝).
We can select and use generated rules. We use roulette-
wheel selection as a selection algorithm, and a priority score
as the fitness value. The priority score is increased by se-
lecting a rule in the upper area by hand. There is a button
to reset the score (4⃝).

Figure 6: Social network mode

We show a concrete example of ECA rule generation. We
assume that there are four rules: “when the user makes
the gesture of shaking hands, it takes a photo”, “when the
user is running, it pauses the system”, “when the user has
one minute to kill and he/she is standing still, it shows a
notepad”, “when the user has five minutes to kill, it shows
the user’s facebook page”. By using our mechanism, the
system generates new rules such as “when the user has one
minute to kill, it shows a weather forecast”, “when the user
has five minutes to kill, it takes a photo.” It may help users
to use new services.

3.5 Social network mode
In on-site programming, there are cases where rules that

people under similar situations have are also useful to the
user. For example, if the rule “when the user arrives at an
event venue, it sends a message to Twitter” is used by a
person, the rule is also useful for aother person who is on
the way to the same place. Moreover, the rules of a person
who has similar characteristics to the user are more useful
than the rules of strangers.
Therefore, we propose a service definition mode using a

social network as shown in Figure 6. The system shows
friends in the upper area in order of their similarity to the
user (1⃝). The rules are shown in the lower area by selecting
a friend (2⃝), and we can use/modify any displayed rule.
The similarity is calculated based on the rules that the users
have.

4. IMPLEMENTATION
We implemented a prototype of the proposed system. The

On-site Developing Tool is implemented as an Adobe AIR
application running on Windows 7. We can operate the
system with only four cursor keys and the enter key of a
small keypad or joystick. As a preliminary evaluation of the
sorting function, we measured the number of operations to
define eight rules that are actually likely to be used in daily-
life. Using our sorting method, it takes 85 steps to define all
rules while 242 steps are required when not using our sorting
method. In addition, we made a preliminary evaluation of
the genetic algorithm mode. We actually made 20 rules from
the 4 rules described in Section 3.4. Subjectively, 5 rules out
of 20 are useful.
Figure 7 shows examples of defined rules. From top left,

they mean “when the timer is started and the count is 0, it
takes a photo”, “when the position changes, it posts ‘I am

Figure 7: Examples of defined rules

moving now’ to Twitter”, “when the user makes the gesture
of shaking hands, it takes a photo”, “when the user sits,
it initializes the count and measures the duration he/she is
sitting”, “when the user has one minute to kill and he/she
stands still, it shows a notepad”, and “when the user has
five minutes to kill, it shows a his/her facebook page”. The
last two services are examples of that the system helping the
user to use time efficiently.

5. CONCLUSION
In this paper, we proposed an on-site programming en-

vironment for wearable computing. The proposed system
helps users to define rules with few keys and few operations.
The functions of the social network mode and genetic al-
gorithm mode are specialized for programming in wearable
computing environments and have the possibility to make
the programming drastically easier for the end-user.

On the other hand, we did not evaluate the proposed
mechanism in actual environments and will evaluate it by
feedback from end-users and investigate further improve-
ment of our tools. The effectiveness of implementing ser-
vices in ECA rules is confirmed in our previous researches[5].
End-users usually cannot think of the correct idea of services
they want. Our tools present several hints to think of con-
crete services and motivates users to implement services.

6. REFERENCES
[1] Lego mindstorms.

http://www.legoeducation.jp/mindstorms/.

[2] Scratch. http://scratch.mit.edu/.

[3] Squeak etoys. http://www.squeakland.org/.

[4] Y. Harada. Learn programming with viscuit. Journal of
the Institute of Electronics, Information and
Communication Engineers, 87(8):674–677, 2004.

[5] M. Miyamae, T. Terada, M. Tsukamoto, S. Nishio,
K. Hiraoka, and T. Fukuda. An event-driven wearable
system for supporting motorbike racing teams.
Wearable Computers, IEEE International Symposium,
pages 70–76, 2004.

[6] T. Terada and M. Miyamae. Toward achieving on-site
programming. Wearable Computers, IEEE
International Symposium, pages 3–10, 2009.

[7] R. van Herk, J. Verhaegh, and W. F. Fontijn. Espranto
sdk: An adaptive programming environment for
tangible applications. ACM Conference on Human
Factors in Computing Systems, 2009.

